miRNA sponges: soaking up miRNAs for regulation of gene expression

MicroRNAs (miRNAs) are small regulatory RNAs that act in an entangled web of interactions with target mRNAs to shape the cellular protein landscape by post‐transcriptional control of mRNA decay and translation. miRNAs are themselves subject to numerous regulatory mechanisms that adjust their prevalence and activity. Emerging evidence suggests that miRNAs are themselves targeted by regulatory RNA species, and the identification of several classes of noncoding RNA molecules carrying miRNA binding sites has added a new intricate dimension to miRNA regulation. Such miRNA ‘sponges’ bind miRNAs and competitively sequester them from their natural targets. Endogenous miRNA sponges, also termed competing endogenous RNAs (ceRNAs), act to buffer the activity of miRNAs on physiologically relevant targets. This class of sponges includes endogenously transcribed pseudogenes, long noncoding RNAs, and recently discovered circular RNAs and may act in large complex networks in conjunction with miRNAs to regulate the output of protein. With the growing demand of regulating miRNA activity for experimental purposes and potential future clinical use, naturally occurring miRNA sponges are providing inspiration for engineering of gene vector‐encoded sponges as potent inhibitors of miRNA activity. Combined with potent and versatile vector technologies, expression of custom‐designed sponges provides new means of managing miRNAs and soaking up miRNAs for therapeutic regulation of gene expression.

[1]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[2]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[3]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[4]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[5]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[6]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[7]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[8]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[9]  P. Pandolfi,et al.  Pten Dose Dictates Cancer Progression in the Prostate , 2003, PLoS biology.

[10]  F. Slack,et al.  The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. , 2003, Developmental biology.

[11]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[12]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[13]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[14]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[15]  Thomas Tuschl,et al.  Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. , 2004, RNA.

[16]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[17]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[18]  B. Cullen,et al.  Adenovirus VA1 Noncoding RNA Can Inhibit Small Interfering RNA and MicroRNA Biogenesis , 2004, Journal of Virology.

[19]  Zipora Y. Fligelman,et al.  Systematic identification of abundant A-to-I editing sites in the human transcriptome , 2004, Nature Biotechnology.

[20]  Henry Mirsky,et al.  RNA editing of a miRNA precursor. , 2004, RNA.

[21]  Ben Berkhout,et al.  Suppression of RNA Interference by Adenovirus Virus-Associated RNA , 2005, Journal of Virology.

[22]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[23]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[24]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[25]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[26]  Xuemei Chen,et al.  Methylation Protects miRNAs and siRNAs from a 3′-End Uridylation Activity in Arabidopsis , 2005, Current Biology.

[27]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[28]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[29]  P. Seeburg,et al.  Modulation of microRNA processing and expression through RNA editing by ADAR deaminases , 2006, Nature Structural &Molecular Biology.

[30]  W. Filipowicz,et al.  Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress , 2006, Cell.

[31]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[32]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[33]  Yukio Kawahara,et al.  RNA editing of the microRNA‐151 precursor blocks cleavage by the Dicer–TRBP complex , 2007, EMBO reports.

[34]  L. Landweber,et al.  Hypothesis: RNA editing of microRNA target sites in humans? , 2007, RNA.

[35]  C. Croce,et al.  MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.

[36]  Reuven Agami,et al.  RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA , 2007, Cell.

[37]  A. Hatzigeorgiou,et al.  Redirection of Silencing Targets by Adenosine-to-Inosine Editing of miRNAs , 2007, Science.

[38]  A. Ganser,et al.  Lentivirus-mediated antagomir expression for specific inhibition of miRNA function , 2007, Nucleic acids research.

[39]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[40]  M. Todesco,et al.  Target mimicry provides a new mechanism for regulation of microRNA activity , 2007, Nature Genetics.

[41]  C. Semple,et al.  Posttranscriptional Regulation of miRNAs Harboring Conserved Terminal Loops , 2008, Molecular cell.

[42]  P. Ongusaha,et al.  Prolyl 4-hydroxylation regulates Argonaute 2 stability , 2008, Nature.

[43]  Molly Megraw,et al.  Frequency and fate of microRNA editing in human brain , 2008, Nucleic acids research.

[44]  O. Kirak,et al.  Regulation of progenitor cell proliferation and granulocyte function by microRNA-223 , 2008, Nature.

[45]  Jun S. Song,et al.  Chromatin structure analyses identify miRNA promoters , 2008 .

[46]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[47]  Lynn Doucette-Stamm,et al.  A C . elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity , 2008 .

[48]  Wei Zhang,et al.  Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. , 2008, Carcinogenesis.

[49]  T. Tuschl,et al.  Structure of the guide-strand-containing argonaute silencing complex , 2008, Nature.

[50]  R. Knight,et al.  Regions and Fewer MicroRNA Target Sites Proliferating Cells Express mRNAs with Shortened 3 ' Untranslated , 2012 .

[51]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[52]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[53]  X. Hong,et al.  Steroidal regulation of uterine miRNAs is associated with modulation of the miRNA biogenesis components Exportin-5 and Dicer1 , 2010, Endocrine.

[54]  G. Wong,et al.  Hyaluronan-CD44 Interaction with Protein Kinase Cϵ Promotes Oncogenic Signaling by the Stem Cell Marker Nanog and the Production of MicroRNA-21, Leading to Down-regulation of the Tumor Suppressor Protein PDCD4, Anti-apoptosis, and Chemotherapy Resistance in Breast Tumor Cells* , 2009, The Journal of Biological Chemistry.

[55]  R. Gregory,et al.  Many roads to maturity: microRNA biogenesis pathways and their regulation , 2009, Nature Cell Biology.

[56]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[57]  T. Katoh,et al.  Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. , 2009, Genes & development.

[58]  Hiroshi I. Suzuki,et al.  Modulation of microRNA processing by p53 , 2009, Nature.

[59]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[60]  M. Lindsay,et al.  microRNAs and the immune response. , 2008, Trends in immunology.

[61]  Kevin J Luebke,et al.  Faculty Opinions recommendation of The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. , 2009 .

[62]  L. Smirnova,et al.  The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2 , 2009, Nature Cell Biology.

[63]  Hervé Seitz,et al.  Redefining MicroRNA Targets , 2009, Current Biology.

[64]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[65]  Luigi Naldini,et al.  Stable knockdown of microRNA in vivo by lentiviral vectors , 2009, Nature Methods.

[66]  H. Iba,et al.  Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells , 2009, Nucleic acids research.

[67]  H. Grosshans,et al.  Active turnover modulates mature microRNA activity in Caenorhabditis elegans , 2009, Nature.

[68]  B. O’Malley,et al.  Maturation of microRNA is hormonally regulated by a nuclear receptor. , 2009, Molecular cell.

[69]  S. Srikantan,et al.  HuR recruits let-7/RISC to repress c-Myc expression. , 2009, Genes & development.

[70]  C. Sander,et al.  Target mRNA abundance dilutes microRNA and siRNA activity , 2010, Molecular systems biology.

[71]  A. Krainer,et al.  A splicing-independent function of SF2/ASF in microRNA processing. , 2010, Molecular cell.

[72]  Ji Wan,et al.  Structure and activity of putative intronic miRNA promoters. , 2010, RNA.

[73]  Zhiping Weng,et al.  Target RNA–Directed Trimming and Tailing of Small Silencing RNAs , 2010, Science.

[74]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[75]  P. Pandolfi,et al.  A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010, Nature.

[76]  Y. Hayashizaki,et al.  A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. , 2010, Genome research.

[77]  Selene L. Fernandez-Valverde,et al.  Dynamic isomiR regulation in Drosophila development. , 2010, RNA.

[78]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[79]  Yaou Zhang,et al.  Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions , 2010, PloS one.

[80]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[81]  A. Hata,et al.  Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. , 2010, Molecular cell.

[82]  J. Steitz,et al.  Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA , 2010, Science.

[83]  H. Ebhardt,et al.  Naturally occurring variations in sequence length creates microRNA isoforms that differ in argonaute effector complex specificity , 2010, Silence.

[84]  Takashi Fukaya,et al.  PABP is not essential for microRNA‐mediated translational repression and deadenylation in vitro , 2011, The EMBO journal.

[85]  Jørgen Kjems,et al.  miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA , 2011, The EMBO journal.

[86]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[87]  Uwe Ohler,et al.  Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. , 2011, Molecular cell.

[88]  Ferdinando Di Cunto,et al.  Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs , 2011, Cell.

[89]  Helene Wahlstedt,et al.  Site‐selective versus promiscuous A‐to‐I editing , 2011, Wiley interdisciplinary reviews. RNA.

[90]  D. Patel,et al.  Phosphorylation of human Argonaute proteins affects small RNA binding , 2010, Nucleic acids research.

[91]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[92]  Xuerui Yang,et al.  An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma , 2011, Cell.

[93]  J. Haas,et al.  Viruses and microRNAs: a toolbox for systematic analysis , 2011, Wiley interdisciplinary reviews. RNA.

[94]  P. Pandolfi,et al.  In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma , 2011, Cell.

[95]  Ling Fang,et al.  Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis , 2010, Nucleic acids research.

[96]  N. Rajewsky,et al.  Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. , 2011, Molecular cell.

[97]  Ravi Sachidanandam,et al.  Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells , 2011, Current Biology.

[98]  Hyeshik Chang,et al.  Dicer recognizes the 5′ end of RNA for efficient and accurate processing , 2011, Nature.

[99]  K. Palczewski,et al.  Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of the Retina* , 2011, The Journal of Biological Chemistry.

[100]  S. Vasudevan Posttranscriptional Upregulation by MicroRNAs , 2012, Wiley interdisciplinary reviews. RNA.

[101]  Myriam Gorospe,et al.  Functional interplay between RNA-binding protein HuR and microRNAs. , 2012, Current protein & peptide science.

[102]  S. Pfeffer,et al.  Degradation of Cellular miR-27 by a Novel, Highly Abundant Viral Transcript Is Important for Efficient Virus Replication In Vivo , 2012, PLoS pathogens.

[103]  C. Mello,et al.  Specific miRNA stabilization by Gld2-catalyzed monoadenylation. , 2012, Cell reports.

[104]  W. Filipowicz,et al.  Kinetic analysis reveals successive steps leading to miRNA‐mediated silencing in mammalian cells , 2012, EMBO reports.

[105]  Yuichiro Mishima,et al.  Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish , 2012, Proceedings of the National Academy of Sciences.

[106]  B. Moss,et al.  Degradation of host microRNAs by poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. , 2012, Cell host & microbe.

[107]  R. Green,et al.  miRNA-Mediated Gene Silencing by Translational Repression Followed by mRNA Deadenylation and Decay , 2012, Science.

[108]  A. Pasquinelli,et al.  Auto-regulation of miRNA biogenesis by let-7 and Argonaute , 2012, Nature.

[109]  A. Giraldez,et al.  Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish , 2012, Science.

[110]  N. Sakamoto,et al.  Suppression of hepatitis C virus replicon by adenovirus vector-mediated expression of tough decoy RNA against miR-122a. , 2012, Virus research.

[111]  Edwin Sandanaraj,et al.  Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. , 2012, The Journal of clinical investigation.

[112]  Yue Zhang,et al.  The Loop Position of shRNAs and Pre-miRNAs Is Critical for the Accuracy of Dicer Processing In Vivo , 2012, Cell.

[113]  A. Amano,et al.  BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex , 2012, The Journal of cell biology.

[114]  Stefan L Ameres,et al.  Long-term, efficient inhibition of microRNA function in mice using rAAV vectors , 2012, Nature Methods.

[115]  R. Sachidanandam,et al.  High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries , 2012, Nature Methods.

[116]  Luca Biasco,et al.  Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome , 2013, Science.

[117]  P. Gao,et al.  c-Myc modulates microRNA processing via the transcriptional regulation of Drosha , 2013, Scientific Reports.

[118]  R. Bak,et al.  Efficient Sleeping Beauty DNA Transposition From DNA Minicircles , 2013, Molecular therapy. Nucleic acids.

[119]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[120]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[121]  S. Kauppinen,et al.  Treatment of HCV infection by targeting microRNA. , 2013, The New England journal of medicine.

[122]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[123]  C. von Kalle,et al.  Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Metachromatic Leukodystrophy , 2013, Science.

[124]  R. Bak,et al.  Potent microRNA suppression by RNA Pol II-transcribed 'Tough Decoy' inhibitors. , 2013, RNA.

[125]  Yue Wang,et al.  Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. , 2013, Developmental cell.

[126]  R. Bak,et al.  Suppression of microRNAs by dual-targeting and clustered Tough Decoy inhibitors , 2013, RNA biology.

[127]  Vladimir N Uversky,et al.  Hypothesis , 2013, Intrinsically Disordered Proteins.

[128]  C. Bond,et al.  RNA binding protein , 2015 .