A new approach to greedy multiuser detection

We propose a new suboptimum multiuser detector for synchronous and asynchronous multiuser communications. In this approach, a greedy strategy is used to maximize the cost function, the maximum-likelihood (ML) metric. The coefficients of the ML metric are utilized as weights indicating in which order bits can be estimated. The complexity of the algorithm is approximately K/sup 2/ log K per bit, where K is the number of users. We analyze the performance of the greedy multiuser detection in the additive white Gaussian noise channel as well as in the frequency-nonselective Rayleigh fading channel, and compare it with the optimum detector and several suboptimum schemes such as conventional, successive interference cancellation, decorrelator, sequential, and multistage detectors. The proposed greedy approach considerably outperforms these suboptimum schemes, especially for moderate and high loads in low and moderate signal-to-noise ratio regions. The results show that when there is a significant imbalance in the values of the coefficients of the ML metric due to moderate to high noise, fading, and asynchronous transmission, near-optimum performance is achieved by the greedy detection.

[1]  Zoran Zvonar,et al.  Multiuser detection in single-path fading channels , 1994, IEEE Trans. Commun..

[2]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[3]  Craig K. Rushforth,et al.  Multiuser signal detection using sequential decoding , 1990, IEEE Trans. Commun..

[4]  Lars K. Rasmussen,et al.  Near optimum tree-search detection schemes for bit-synchronous multiuser CDMA systems over Gaussian and two-path Rayleigh-fading channels , 1997, IEEE Trans. Commun..

[5]  Behnaam Aazhang,et al.  Multistage detection in asynchronous code-division multiple-access communications , 1990, IEEE Trans. Commun..

[6]  J. M. Holtzman,et al.  DS/CDMA successive interference cancellation , 1994, Proceedings of IEEE 3rd International Symposium on Spread Spectrum Techniques and Applications (ISSSTA'94).

[7]  Francisco Barahona,et al.  A solvable case of quadratic 0-1 programming , 1986, Discret. Appl. Math..

[8]  A. K. Mittal,et al.  Unconstrained quadratic bivalent programming problem , 1984 .

[9]  Sergio Verdú,et al.  Linear multiuser detectors for synchronous code-division multiple-access channels , 1989, IEEE Trans. Inf. Theory.

[10]  Alexandra Duel-Hallen,et al.  Decorrelating decision-feedback multiuser detector for synchronous code-division multiple-access channel , 1993, IEEE Trans. Commun..

[11]  Lei Wei,et al.  Synchronous DS-SSMA system with improved decorrelating decision-feedback multiuser detection , 1994 .

[12]  Michael W. Carter,et al.  The indefinite zero-one quadratic problem , 1984, Discret. Appl. Math..

[13]  D. P. Taylor,et al.  Vector assignment scheme for M+N users in N-dimensional global additive channel , 1992 .

[14]  Anthony Ephremides,et al.  Solving a Class of Optimum Multiuser Detection Problems with Polynomial Complexity , 1998, IEEE Trans. Inf. Theory.

[15]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[16]  Panos M. Pardalos,et al.  Construction of test problems in quadratic bivalent programming , 1991, TOMS.

[17]  B. Vojcic,et al.  Greedy multiuser detection over single-path fading channel , 2000, 2000 IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications. ISSTA 2000. Proceedings (Cat. No.00TH8536).

[18]  Alan S. Willsky,et al.  Low complexity optimal joint detection for oversaturated multiple access communications , 1997, IEEE Trans. Signal Process..

[19]  J. Massey,et al.  Welch’s Bound and Sequence Sets for Code-Division Multiple-Access Systems , 1993 .

[20]  Lars K. Rasmussen,et al.  Breadth-first maximum likelihood detection in multiuser CDMA , 1997, IEEE Trans. Commun..

[21]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[22]  Kenneth P. Bogart,et al.  Introductory Combinatorics , 1977 .

[23]  P. Kempf,et al.  A non-orthogonal synchronous DS-CDMA case, where successive cancellation and maximum-likelihood multiuser detectors are equivalent , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.