REVERSE CONVERTERS FOR THE MODULI SETS (22N-1, ZN, 2zN+1) AND {2"-3, 2N+1, 2N-1, ZN+3)
暂无分享,去创建一个
[1] A. Dhurkadas. Comments on "A high speed realization of a residue to binary number system converter" , 1998 .
[2] A. Benjamin Premkumar,et al. A Memoryless Reverse Converter for the 4-Moduli Superset {2n-1, 2n, 2n+1, 2n+1-1} , 2000, J. Circuits Syst. Comput..
[3] Tolga Acar,et al. Analyzing and comparing Montgomery multiplication algorithms , 1996, IEEE Micro.
[4] Colin D. Walter. Space/Time Trade-Offs for Higher Radix Modular Multiplication Using Repeated Addition , 1997, IEEE Trans. Computers.
[5] P. L. Montgomery. Modular multiplication without trial division , 1985 .
[6] G. Jullien,et al. An improved residue-to-binary converter , 2000 .
[7] A. P. Vinod. A residue to Binary converter for the 4-moduli superset {2^n-1,2^n, 2^n+1, 2^ -1} , 2000 .
[8] Hong Shen,et al. Adder based residue to binary number converters for (2n-1, 2n, 2n+1) , 2002, IEEE Trans. Signal Process..
[9] Ming-Hwa Sheu,et al. An efficient VLSI design for a residue to binary converter for general balance moduli (2n-3, 2n+1, 2n-1, 2n+3) , 2004, IEEE Trans. Circuits Syst. II Express Briefs.
[10] S. J. Meehan,et al. An universal input and output RNS converter , 1990 .