Elements of Cortical Architecture

Extrastriate visual cortex consists of multiple areas. As reviewed elsewhere (Kaas, 1989; Colby and Duhamel, 1991; and several chapters in this volume), there are still many questions concerning specific boundaries and subdivisions, and the criteria for area identification themselves remain under discussion. How areas interact is even less well known and is very much a topic of active research. Is there an overall architecture? Are there patterns of sequential or synchronous coactivation?

[1]  Andreas Burkhalter,et al.  Microcircuitry of forward and feedback connections within rat visual cortex , 1996, The Journal of comparative neurology.

[2]  M. Yukie,et al.  Amygdalofugal and amygdalopetal connections with modality‐specific visual cortical areas in macaques (macaca fuscata, M. mulatta, and M. fascicularis) , 1987, The Journal of comparative neurology.

[3]  J. Bullier,et al.  Parallel versus serial processing: new vistas on the distributed organization of the visual system , 1995, Current Opinion in Neurobiology.

[4]  J. Tigges,et al.  Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey , 1977, The Journal of comparative neurology.

[5]  K. Tanaka,et al.  Divergent Projections from the Anterior Inferotemporal Area TE to the Perirhinal and Entorhinal Cortices in the Macaque Monkey , 1996, The Journal of Neuroscience.

[6]  Paul Antoine Salin,et al.  Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. , 1992, Visual neuroscience.

[7]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[8]  Wolf Singer,et al.  Development and Plasticity of Cortical Processing Architectures , 1995, Science.

[9]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[11]  J. Tigges,et al.  Efferent cortico‐cortical fiber connections of area 18 in the squirrel monkey (Saimiri) , 1974, The Journal of comparative neurology.

[12]  Robert B. Nelson,et al.  Gradients of protein kinase C substrate phosphorylation in primate visual system peak in visual memory storage areas , 1987, Brain Research.

[13]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[14]  J C Anderson,et al.  Form, function, and intracortical projections of neurons in the striate cortex of the monkey Macacus nemestrinus. , 1993, Cerebral cortex.

[15]  J. Kaas,et al.  Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys , 1992, The Journal of comparative neurology.

[16]  C. Koch,et al.  A brief history of time (constants). , 1996, Cerebral cortex.

[17]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[18]  E. Callaway,et al.  Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  S. Bressler Large-scale cortical networks and cognition , 1995, Brain Research Reviews.

[20]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[21]  Leslie G. Ungerleider,et al.  Network analysis of cortical visual pathways mapped with PET , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[23]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[24]  G. Innocenti,et al.  Computational Structure of Visual Callosal Axons , 1994, The European journal of neuroscience.

[25]  E. G. Jones,et al.  Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. , 1991, Cerebral cortex.

[26]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[27]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[28]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[30]  C. Koch,et al.  Effect of geometrical irregularities on propagation delay in axonal trees. , 1991, Biophysical journal.

[31]  M. Wong-Riley Reciprocal connections between striate and prestriate cortex in squirrel monkey as demonstrated by combined peroxidase histochemistry and autoradiography , 1978, Brain Research.

[32]  D. Fitzpatrick,et al.  The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex , 1994, Visual Neuroscience.

[33]  M P Young,et al.  Indeterminate Organization of the Visual System , 1996, Science.

[34]  S. Kosslyn,et al.  Topographical representations of mental images in primary visual cortex , 1995, Nature.

[35]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  E. G. Jones,et al.  Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex , 1995, The Journal of comparative neurology.

[38]  M. King,et al.  Biocytin: a versatile anterograde neuroanatomical tract-tracing alternative , 1989, Brain Research.

[39]  P. Goldman-Rakic Topography of cognition: parallel distributed networks in primate association cortex. , 1988, Annual review of neuroscience.

[40]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[41]  M. Mishkin,et al.  OCCIPITOTEMPORAL CORTICOCORTICAL CONNECTIONS IN THE RHESUS MONKEY. , 1965, Experimental neurology.

[42]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[44]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[45]  K. Rockland,et al.  Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. , 1992, Cerebral cortex.

[46]  K. Rockland,et al.  Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris‐leucoagglutinin , 1989, The Journal of comparative neurology.

[47]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[48]  E. DeYoe,et al.  Concurrent processing in the primate visual cortex. , 1995 .

[49]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[50]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[51]  G. Orban,et al.  Response latencies of visual cells in macaque areas V1, V2 and V5 , 1989, Brain Research.

[52]  R. Malach,et al.  Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex , 1993, The Journal of comparative neurology.

[53]  S. Foote,et al.  Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys , 1986, The Journal of comparative neurology.

[54]  Karl J. Friston,et al.  Functional topography: multidimensional scaling and functional connectivity in the brain. , 1996, Cerebral cortex.

[55]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[56]  Vivien A. Casagrande,et al.  The Afferent, Intrinsic, and Efferent Connections of Primary Visual Cortex in Primates , 1994 .

[57]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[58]  J. Tigges,et al.  Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri) , 1981, The Journal of comparative neurology.

[59]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[60]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[61]  E. Yeterian,et al.  Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections , 1978, Brain Research.

[62]  J. Rawson,et al.  Morphology of parallel fibres in the cerebellar cortex of the rat: An experimental light and electron microscopic study with biocytin , 1994, The Journal of comparative neurology.

[63]  V. Casagrande,et al.  Development of geniculocortical axon arbors in a primate , 1990, Visual Neuroscience.

[64]  K. Rockland,et al.  Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. , 1994, Cerebral cortex.

[65]  A. Peters Number of Neurons and Synapses in Primary Visual Cortex , 1987 .

[66]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[67]  I. Darian‐Smith,et al.  Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. , 1994, Cerebral cortex.

[68]  J. B. Levitt,et al.  Substrates for Interlaminar Connections in Area V1 of Macaque Monkey Cerebral Cortex , 1994 .

[69]  K. Rockland,et al.  Specific and columnar projection from area TEO to TE in the macaque inferotemporal cortex. , 1993, Cerebral cortex.

[70]  Edward G. Jones,et al.  Connectivity of the Primate Sensory-Motor Cortex , 1986 .

[71]  K. Rockland Two types of corticopulvinar terminations: Round (type 2) and elongate (type 1) , 1996, The Journal of comparative neurology.

[72]  T. Wiesel,et al.  Patterns of synaptic input to layer 4 of cat striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  J. Lund,et al.  Anatomical organization of primate visual cortex area VII , 1981, The Journal of comparative neurology.

[75]  S Zeki,et al.  Parallelism and functional specialization in human visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[76]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[78]  K. Rockland,et al.  Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey , 1989, Visual Neuroscience.

[79]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[80]  Jean Bullier,et al.  The Role of Area 17 in the Transfer of Information to Extrastriate Visual Cortex , 1994 .

[81]  R. Doty,et al.  Nongeniculate afferents to striate cortex in macaques , 1983, The Journal of comparative neurology.

[82]  W. B. Spatz,et al.  Morphology and connections of neurons in area 17 projecting to the extrastriate areas mt and 19DM and to the superior colliculus in the monkey Callithrix jacchus , 1995, The Journal of comparative neurology.

[83]  E G Jones,et al.  Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  M Mishkin,et al.  Organization of the amygdalopetal projections from modality‐specific cortical association areas in the monkey , 1980, The Journal of comparative neurology.

[85]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[86]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[87]  A. Aertsen,et al.  Dynamics of neuronal interactions in monkey cortex in relation to behavioural events , 1995, Nature.

[88]  E. G. Jones,et al.  Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex. , 1992, Cerebral cortex.

[89]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[90]  K. Rockland,et al.  Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey , 1990, Visual Neuroscience.

[91]  Antonio R. Damasio,et al.  The Brain Binds Entities and Events by Multiregional Activation from Convergence Zones , 1989, Neural Computation.

[92]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[93]  A. Hendrickson,et al.  The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey , 1977, Brain Research.

[94]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[95]  Y Miyashita,et al.  How the brain creates imagery: projection to primary visual cortex. , 1995, Science.

[96]  K. Rockland,et al.  Morphology of individual axons projecting from area V2 to MT in the macaque , 1995, The Journal of comparative neurology.

[97]  K. Rockland The Organization of Feedback Connections from Area V2 (18) to V1 (17) , 1994 .

[98]  L. Haberly,et al.  Ultrastructural analysis of synaptic relationships of intracellularly stained pyramidal cell axons in piriform cortex , 1986, The Journal of comparative neurology.

[99]  A. Damasio,et al.  Cortical systems for retrieval of concrete knowledge: The convergence zone framework , 1994 .

[100]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[101]  C. Curcio,et al.  Organization of pulvinar afferents to area 18 in the squirrel monkey: evidence for stripes , 1978, Brain Research.

[102]  V A Casagrande,et al.  Organization of individual afferent axons in layer IV of striate cortex in a primate , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  D. V. van Essen,et al.  The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[104]  A. Reiner,et al.  Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies , 1992, Journal of Neuroscience Methods.

[105]  G. Innocenti,et al.  Morphology of Callosal Axons Interconnecting Areas 17 and 18 of the Cat , 1994, The European journal of neuroscience.

[106]  Leslie G. Ungerleider,et al.  Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways , 1996, The Journal of comparative neurology.

[107]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[108]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[109]  J. B. Levitt,et al.  Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases for neuroanatomically realistic models. , 1995, Journal of anatomy.

[110]  I Fujita,et al.  Intrinsic connections in the macaque inferior temporal cortex , 1996, The Journal of comparative neurology.

[111]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[112]  P. C. Murphy,et al.  Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[113]  D. Sagi,et al.  Common mechanisms of visual imagery and perception. , 1995, Science.

[114]  W Fries,et al.  Large layer VI neurons of monkey striate cortex (Meynert cells) project to the superior colliculus , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[115]  S. Bressler Interareal synchronization in the visual cortex , 1996, Behavioural Brain Research.

[116]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[117]  M. Colonnier,et al.  Postnatal changes in the number of neurons and synapses in the visual cortex (area 17) of the macaque monkey: A stereological analysis in normal and monocularly deprived animals , 1982, The Journal of comparative neurology.

[118]  K. Rockland,et al.  Collateralized divergent feedback connections that target multiple cortical areas , 1996, The Journal of comparative neurology.

[119]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[120]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[121]  D C Van Essen,et al.  On hierarchies: response to Hilgetag et al. , 1996, Science.

[122]  B. V. Updyke,et al.  Corticotectal projections in the cat: Anterograde transport studies of twenty‐five cortical areas , 1992, The Journal of comparative neurology.

[123]  J. B. Levitt,et al.  Intrinsic lattice connections of macaque monkey visual cortical area V4 , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  U. Eysel,et al.  Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17) , 1992, Neuroscience.

[125]  S. Thorpe,et al.  Dynamics of orientation coding in area V1 of the awake primate , 1993, Visual Neuroscience.

[126]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[128]  T. Voigt,et al.  Morphology of the cells within the inferior temporal gyrus that project to the prefrontal cortex in the macaque monkey , 1990, The Journal of comparative neurology.

[129]  C. W. Ragsdale,et al.  A simple ordering of neocortical areas established by the compartmental organization of their striatal projections. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[130]  S. Zeki,et al.  Modular Connections between Areas V2 and V4 of Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[131]  J. Kaas Why Does the Brain Have So Many Visual Areas? , 1989, Journal of Cognitive Neuroscience.

[132]  A. Grinvald,et al.  Optical Imaging of the Layout of Functional Domains in Area 17 and Across the Area 17/18 Border in Cat Visual Cortex , 1995, The European journal of neuroscience.

[133]  P S Goldman-Rakic,et al.  Columnar organization of corticocortical projections in squirrel and rhesus monkeys: Similarity of column width in species differing in cortical volume , 1983, The Journal of comparative neurology.

[134]  M. Freund-Mercier,et al.  Localization of Oxytocin Binding Sites in the Thoracic and Upper Lumbar Spinal Cord of the Adult and Postnatal Rat: A Histoautoradiographic Study , 1994, The European journal of neuroscience.

[135]  J. Kaas,et al.  Corticocortical and collateral thalamocortical connections of postcentral somatosensory cortical areas in squirrel monkeys: a double-labeling study with radiolabeled wheatgerm agglutinin and wheatgerm agglutinin conjugated to horseradish peroxidase. , 1985, Somatosensory research.

[136]  G. Edelman,et al.  Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. , 1992, Cerebral cortex.

[137]  J. Kaas,et al.  Retinotopic patterns of connections of area 17 with visual areas V‐II and MT in macaque monkeys , 1983, The Journal of comparative neurology.

[138]  E G Jones,et al.  Neurochemical gradient along the monkey occipito-temporal cortical pathway. , 1994, Neuroreport.