Current concepts and applications of computer navigation in orthopedic trauma surgery

Navigation has become widely integrated into regular endoprosthetic procedures, but clinical use of navigation systems in orthopaedic trauma has only been implemented in a few indications. Navigation systems enable an accuracy of 1 mm or 1 degree. Navigation can achieve higher precision when it is combined with different imaging modalities, including preoperative computer tomography (CT), intraoperative CT, two-dimensional fluoroscopy, and, recently, intraoperative three-dimensional fluoroscopy. The precision of the navigation system can be influenced by the surgeon as well as by the camera system, type of reference marker, and the registration process. Recent developments in orthopedic trauma navigation allow for bilateral femoral anteversion measurements, noninvasive registration of an uninjured thigh, and intraoperative three-dimensional fluoroscopy-based pedicle screw placement. Although the use of navigation has provided initial positive results in trauma care, prospective clinical studies remain to be performed.

[1]  W. Mutschler,et al.  [3-D imaging with a mobile surgical image enhancement equipment (ISO-C-3D). Initial examples of fracture diagnosis of peripheral joints in comparison with spiral CT and conventional radiography]. , 2001, Der Unfallchirurg.

[2]  T. Hüfner,et al.  Präzision in der orthopädischen Computernavigation , 2006, Der Orthopäde.

[3]  C. Krettek,et al.  Experimental validation of noninvasive referencing in navigated procedures on long bones , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[4]  R Perez,et al.  Effect of optical digitizer selection on the application accuracy of a surgical localization system-a quantitative comparison between the OPTOTRAK and flashpoint tracking systems. , 1999, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[5]  U. Stöckle,et al.  Navigationsverfahren in der Becken- und Azetabulumchirurgie , 2002, Der Unfallchirurg.

[6]  A. Prescher,et al.  [Accuracy of fluoroscopically navigated drilling procedures at the hip]. , 2003, Zeitschrift fur Orthopadie und ihre Grenzgebiete.

[7]  W. Strecker,et al.  Analyse der Beingeometrie – Standardtechniken und Normwerte , 1998, Der Chirurg.

[8]  M. Richter,et al.  [Navigated osteosynthesis of the proximal femur. An experimental study]. , 2003, Der Unfallchirurg.

[9]  C Krettek,et al.  [A new parallel drill guide for navigating femoral neck screw placement. Development and evaluation]. , 2006, Der Unfallchirurg.

[10]  M. Reiser,et al.  Frakturdiagnostik am Kniegelenk mit einem neuen mobilen CT-System (ISO-C-3D): Vergleich mit konventionellem Röntgen und Spiral-CT , 2002 .

[11]  C. Bach,et al.  The effect of fixation and location on the stability of the markers in navigated total hip arthroplasty: a cadaver study. , 2006, The Journal of bone and joint surgery. British volume.

[12]  C. Krettek,et al.  ROTATIONAL STABILITY OF REFERENCE MARKER SYSTEMS IN COMPUTER AIDED ORTHOPAEDIC SURGERY , 2008 .

[13]  [CT-based and CT-free navigation in knee prosthesis implantation. Results of a prospective study]. , 2003, Der Unfallchirurg.

[14]  T. Hüfner,et al.  Eine neue Doppelbohrbüchse zur navigierten Schenkelhalsverschraubung , 2006, Der Unfallchirurg.

[15]  William M Mihalko,et al.  Effect of one- and two-pin reference anchoring systems on marker stability during total knee arthroplasty computer navigation , 2006, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[16]  H Labelle,et al.  Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. , 2000, Spine.

[17]  J. Grifka,et al.  CT-basierte und CT-freie Navigation in der Knieendoprothetik , 2003, Der Unfallchirurg.

[18]  Andreas Weidner,et al.  Modification of C1–C2 Transarticular Screw Fixation By Image-Guided Surgery , 2000, Spine.

[19]  T. Hüfner,et al.  Navigierte Osteosynthese des proximalen Femurs , 2003, Der Unfallchirurg.

[20]  C. Krettek,et al.  Navigated open-wedge high tibial osteotomy: advantages and disadvantages compared to the conventional technique in a cadaver study , 2006, Knee Surgery, Sports Traumatology, Arthroscopy.

[21]  M. Reiser,et al.  [Detection of tibial condylar fractures using 3D imaging with a mobile image amplifier (Siemens ISO-C-3D): Comparison with plain films and spiral CT]. , 2002, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[22]  S. Wirth,et al.  3D-Bildgebung an einem mobilen chirurgischen Bildverstärker (ISO-C-3D) Erste Bildbeispiele zur Frakturdiagnostik an peripheren Gelenken im Vergleich mit Spiral-CT und konventioneller Radiographie , 2001, Der Unfallchirurg.

[23]  Musa Citak,et al.  Computer Assisted Pelvic Surgery: Registration Based on a Modified External Fixator , 2003, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  C Krettek,et al.  [Navigated Iso-C(3D)-based drilling of a osteochondral lesion of the talus]. , 2003, Der Unfallchirurg.

[26]  K. Benedetto,et al.  Computerassistierte retrograde Bohrung osteochondraler Läsionen am Talus , 2001, Der Orthopäde.

[27]  Musa Citak,et al.  Navigated Iso-C3D-based percutaneous osteoid osteoma resection: A preliminary clinical report , 2005, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[28]  F. Langlotz,et al.  Clinical evaluation of a system for precision enhancement in spine surgery. , 1995, Clinical biomechanics.

[29]  Guoyan Zheng,et al.  Computer aided high tibial open wedge osteotomy. , 2004, Injury.

[30]  Musa Citak,et al.  Navigated femoral nailing using noninvasive registration of the contralateral intact femur to restore anteversion. Technique and clinical use. , 2007, Journal of orthopaedic trauma.

[31]  C. Krettek,et al.  Accuracy analysis of IsoC 3 D versus fluoroscopy-based navigated retrograde drilling of osteochondral lesions , 2007 .

[32]  F. Langlotz,et al.  [The foundations of computer assisted surgery]. , 2006, Der Orthopade.

[33]  F. Langlotz,et al.  Grundlagen der computerassistierten Chirurgie (CAOS) , 2006 .

[34]  N. Haas,et al.  [Computer assisted pelvic and acetabular surgery. Clinical experiences and indications]. , 2002, Der Unfallchirurg.

[35]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[36]  P. Cinquin,et al.  Computer-assisted spine surgery: a technique for accurate transpedicular screw fixation using CT data and a 3-D optical localizer. , 1995, Journal of image guided surgery.

[37]  L. Nolte,et al.  Improved Accuracy of Pedicle Screw Insertion With Computer-Assisted Surgery: A Prospective Clinical Trial of 30 Patients , 1997, Spine.

[38]  Andreas Prescher,et al.  Präzisionsanalyse fluoroskopisch navigierter Zielbohrungen am Hüftkopf , 2003 .

[39]  E P Wilkinson,et al.  Comparative tracking error analysis of five different optical tracking systems. , 2000, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[40]  C Krettek,et al.  Navigated percutaneous pelvic sacroiliac screw fixation: Experimental comparison of accuracy between fluoroscopy and Iso-C3D navigation , 2006, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[41]  C Krettek,et al.  [Computer-assisted surgery for pelvic injuries]. , 2004, Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.

[42]  Cyril Boeri,et al.  Reproducibility of intra-operative measurement of the mechanical axes of the lower limb during total knee replacement with a non-image-based navigation system , 2004, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.