Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes

article i nfo Carbon nanotubes (CNTs) are excellent candidates for torsional elements used in nanoelectro-mechanical systems (NEMS). Simulations show that after being twisted to a certain angle, they buckle and lose their mechanical strength. In this paper, classical molecular dynamics simulations are performed on single-walled carbon nanotubes (CNTs) to investigate the effects of torsion speed and temperature on CNT torsional properties. The AIREBO potential is employed to describe the bonded interactions between carbon atoms. The MD simulations clearly show that the buckling of CNTs in torsion is a reversible process, in which by unloading the buckled CNT in opposite direction, it returns to its original configuration. In addition, the numerical results reveal that the torsional shear modulus of CNTs increases by increasing the temperature and decreasing the torsion speed. Furthermore, the buckling torsion angle of CNTs increases by increasing the torsion speed and decreasing the temperature. Finally, it is observed that torsional properties of CNTs are highly affected by speed of twist and temperature of the nanotubes.

[1]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[2]  Ivica Kolaric,et al.  Carbon nanotube sheets for the use as artificial muscles , 2004 .

[3]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[4]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[5]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[6]  Quan Wang Torsional instability of carbon nanotubes encapsulating C60 fullerenes , 2009 .

[7]  G. Ostojic,et al.  Carbon Nanotubes , 2010, Methods in Molecular Biology.

[8]  M. Meo,et al.  A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes , 2007 .

[9]  Hui-Ming Cheng,et al.  Hydrogen storage in carbon nanotubes , 2001 .

[10]  Vesselin Shanov,et al.  A multi-wall carbon nanotube tower electrochemical actuator. , 2006, Nano letters.

[11]  R. Andrews,et al.  Carbon nanotube polymer composites , 2004 .

[12]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[13]  Traian Dumitrica,et al.  Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Boris I. Yakobson,et al.  Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes , 1998 .

[15]  D. Srivastava,et al.  Tensile strength of carbon nanotubes under realistic temperature and strain rate , 2002, cond-mat/0202513.

[16]  Mohammad Taghi Kazemi,et al.  An investigation on the validity of Cauchy–Born hypothesis using Sutton-Chen many-body potential , 2009 .

[17]  Saurabh Chopra,et al.  Selective gas detection using a carbon nanotube sensor , 2003 .

[18]  M. Dresselhaus,et al.  Superplastic carbon nanotubes , 2006, Nature.

[19]  R. Jay Conant,et al.  Advanced Mechanics of Materials , 2003 .

[20]  John W. Gillespie,et al.  An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes , 2005 .

[21]  Hartmut Bossel,et al.  Modeling and simulation , 1994 .

[22]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[23]  C. Wang,et al.  Effect of strain rate on the buckling behavior of single- and double-walled carbon nanotubes , 2007 .

[24]  Susan B. Sinnott,et al.  Torsional stiffening of carbon nanotube systems , 2007 .

[25]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[26]  Mohammad Taghi Kazemi,et al.  Stability and size-dependency of Cauchy–Born hypothesis in three-dimensional applications , 2009 .

[27]  Robert P. H. Chang,et al.  A nanotube-based field-emission flat panel display , 1998 .

[28]  L. Wille,et al.  Simulations of the elastic response of single-walled carbon nanotubes , 1998 .

[29]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[30]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[31]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[32]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[33]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[34]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[35]  R. Superfine,et al.  Experimental measurement of single-wall carbon nanotube torsional properties. , 2006, Physical review letters.

[36]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  M. Dresselhaus Carbon nanotubes , 1995 .

[39]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[40]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[41]  S. Sinnott,et al.  Elastic torsional responses of carbon nanotube systems , 2007 .

[42]  Michele Meo,et al.  On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach , 2009 .

[43]  Tienchong Chang,et al.  Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependent , 2007 .

[44]  Wang Yu,et al.  Atomistic simulation of the torsion deformation of carbon nanotubes , 2004 .

[45]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[46]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[47]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[48]  R. Cook,et al.  Advanced Mechanics of Materials , 1985 .