Convergence Rate of Markov Chains and Hybrid Numerical Schemes to Jump-Diffusion with Application to the Bates Model

We study the rate of weak convergence of Markov chains to diffusion processes under suitable but quite general assumptions. We give an example in the financial framework, applying the convergence analysis to a multiple jumps tree approximation of the CIR process. Then, we combine the Markov chain approach with other numerical techniques in order to handle the different components in jump-diffusion coupled models. We study the speed of convergence of this hybrid approach and we provide an example in finance, applying our results to a tree-finite difference approximation in the Heston or Bates model.

[1]  Daniel B. Nelson,et al.  Simple Binomial Processes as Diffusion Approximations in Financial Models , 1990 .

[2]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[3]  Brahim Mezerdi,et al.  Pathwise uniqueness and approximation of solutions of stochastic differential equations , 1998 .

[4]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[5]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[6]  Damien Lamberton,et al.  Variational Formulation of American Option Prices in the Heston Model , 2017, SIAM J. Financial Math..

[7]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[8]  L. Caramellino,et al.  On a hybrid method using trees and finite-differences for pricing options in complex models , 2016 .

[9]  V. Bally,et al.  Approximation of Markov semigroups in total variation distance , 2016 .

[10]  Leif Andersen Simple and efficient simulation of the Heston stochastic volatility model , 2008 .

[11]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[12]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[13]  Andreas Neuenkirch,et al.  Discretizing the Heston Model: An Analysis of the Weak Convergence Rate , 2016, 1604.05540.

[14]  Aurélien Alfonsi,et al.  On the discretization schemes for the CIR (and Bessel squared) processes , 2005, Monte Carlo Methods Appl..

[15]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[16]  Chao Zheng,et al.  Weak Convergence Rate of a Time-Discrete Scheme for the Heston Stochastic Volatility Model , 2017, SIAM J. Numer. Anal..

[17]  Andrey Itkin,et al.  Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials , 2013, 1304.3159.

[18]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[19]  H. Soner,et al.  Approximating Stochastic Volatility by Recombinant Trees , 2012, 1205.3555.

[20]  M. Costabile,et al.  Evaluating fair premiums of equity-linked policies with surrender option in a bivariate model , 2009 .

[21]  Maria Giovanna Garroni,et al.  Green Functions for Second Order Parabolic Integro-Differential Problems , 1993 .

[22]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[23]  D. Brigo,et al.  Interest Rate Models , 2001 .

[24]  L. Caramellino,et al.  A hybrid approach for the implementation of the Heston model , 2013, 1307.7178.

[25]  Gilles Pagès,et al.  Functional quantization for numerics with an application to option pricing , 2005, Monte Carlo Methods Appl..

[26]  Michel Vellekoop,et al.  A tree-based method to price American options in the Heston model , 2009 .

[27]  Jari Toivanen A Componentwise Splitting Method for Pricing American Options Under the Bates Model , 2010 .

[28]  A robust tree method for pricing American options with CIR stochastic interest rate , 2013 .

[29]  M. Bossy,et al.  Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs , 2015, Bernoulli.

[30]  G. Meyer,et al.  The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines , 2008 .

[31]  On Cauchy-Dirichlet Problem in Half-Space for Linear Integro-Differential Equations in Weighted Hoelder Spaces , 2005 .

[32]  Aurélien Alfonsi,et al.  High order discretization schemes for the CIR process: Application to affine term structure and Heston models , 2010, Math. Comput..