On Fault Tolerance for Distributed Iterative Dataflow Processing
暂无分享,去创建一个
Chen Xu | Volker Markl | Manohar Kaul | Markus Holzemer | Juan Soto | V. Markl | Chen Xu | Manohar Kaul | Juan Soto | M. Holzemer
[1] Felix Naumann,et al. The Stratosphere platform for big data analytics , 2014, The VLDB Journal.
[2] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[3] Alexander J. Smola,et al. Scaling Distributed Machine Learning with the Parameter Server , 2014, OSDI.
[4] Geoffrey C. Fox,et al. Twister: a runtime for iterative MapReduce , 2010, HPDC '10.
[5] Seif Haridi,et al. Apache Flink™: Stream and Batch Processing in a Single Engine , 2015, IEEE Data Eng. Bull..
[6] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[7] Gang Chen,et al. Fast Failure Recovery in Distributed Graph Processing Systems , 2014, Proc. VLDB Endow..
[8] Luke M. Leslie,et al. Zorro: zero-cost reactive failure recovery in distributed graph processing , 2015, SoCC.
[9] Volker Markl,et al. "All roads lead to Rome": optimistic recovery for distributed iterative data processing , 2013, CIKM.
[10] Chen Xu,et al. Efficient fault-tolerance for iterative graph processing on distributed dataflow systems , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).
[11] Joseph M. Hellerstein,et al. Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..
[12] Qing He,et al. Parallel K-Means Clustering Based on MapReduce , 2009, CloudCom.
[13] Yuan Yu,et al. Dryad: distributed data-parallel programs from sequential building blocks , 2007, EuroSys '07.
[14] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[15] Sebastiano Vigna,et al. The webgraph framework I: compression techniques , 2004, WWW '04.
[16] Robbert van Renesse,et al. Chain Replication for Supporting High Throughput and Availability , 2004, OSDI.
[17] Jeffrey F. Naughton,et al. Model Selection Management Systems: The Next Frontier of Advanced Analytics , 2016, SGMD.
[18] Carsten Binnig,et al. Cost-based Fault-tolerance for Parallel Data Processing , 2015, SIGMOD Conference.
[19] Fan Yang,et al. Lightweight Fault Tolerance in Large-Scale Distributed Graph Processing , 2016, ArXiv.
[20] John W. Young,et al. A first order approximation to the optimum checkpoint interval , 1974, CACM.
[21] Astrid Rheinländer,et al. Opening the Black Boxes in Data Flow Optimization , 2012, Proc. VLDB Endow..
[22] Michael D. Ernst,et al. HaLoop , 2010, Proc. VLDB Endow..
[23] Magdalena Balazinska,et al. A latency and fault-tolerance optimizer for online parallel query plans , 2011, SIGMOD '11.
[24] Scott Shenker,et al. Spark: Cluster Computing with Working Sets , 2010, HotCloud.
[25] Chen Xu,et al. Optimistic Recovery for Iterative Dataflows in Action , 2015, SIGMOD Conference.
[26] Reynold Xin,et al. GraphX: Graph Processing in a Distributed Dataflow Framework , 2014, OSDI.
[27] Michael J. Carey,et al. Pregelix: Big(ger) Graph Analytics on a Dataflow Engine , 2014, Proc. VLDB Endow..
[28] Volker Markl,et al. Implicit Parallelism through Deep Language Embedding , 2016, SGMD.
[29] Aart J. C. Bik,et al. Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.
[30] Joseph Gonzalez,et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs , 2012, OSDI.