Simulation-Based Optimization with HeuristicLab: Practical Guidelines and Real-World Applications

Dynamic and stochastic problem environments are often difficult to model using standard problem formulations and algorithms. One way to model and then solve them is simulation-based optimization: Simulations are integrated into the optimization process in order to evaluate the quality of solution candidates and to identify optimized system configurations. Potential solutions are evaluated with a simulation model, which leads to new challenges regarding runtime performance, robustness, and distributed evaluation. In order to design, compare, and parameterize algorithmic approaches it is beneficial to use an optimization framework for algorithm design and evaluation. On the one hand, this chapter shows how arbitrary simulators can be coupled with the open-source HeuristicLab optimization framework. This coupling is implemented in a generic way so that the simulators act as external evaluators. On the other hand, we demonstrate how arbitrary optimizers available within HeuristicLab can be called from a simulator in order to perform complex optimization tasks within the simulation model. In order to illustrate the applicability of these approaches, real-world examples investigated by the authors are discussed. We show here application examples from different fields, namely logistics network design, vendor managed inventory routing, steel slab logistics, production optimization with dispatching rule scheduling, material flow simulation, and layout optimization.

[1]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[2]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[3]  Ravi Sethi,et al.  The Complexity of Flowshop and Jobshop Scheduling , 1976, Math. Oper. Res..

[4]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[5]  J. Momoh Electric Power System Applications of Optimization , 2000 .

[6]  M. Kofler,et al.  Modelling and optimizing storage assignment in a steel slab yard , 2012, 2012 4th IEEE International Symposium on Logistics and Industrial Informatics.

[7]  Michael Affenzeller,et al.  Evolutionary computation enabled controlled charging for e-mobility aggregators , 2013, 2013 IEEE Computational Intelligence Applications in Smart Grid (CIASG).

[8]  S. S. Panwalkar,et al.  A Survey of Scheduling Rules , 1977, Oper. Res..

[9]  Oliver R. Inderwildi,et al.  Quo vadis biofuels , 2009 .

[10]  Ihsan Sabuncuoglu,et al.  Simulation optimization: A comprehensive review on theory and applications , 2004 .

[11]  Michael Affenzeller,et al.  Simulation-based evolution of municipal glass-waste collection strategies utilizing electric trucks , 2011, 3rd IEEE International Symposium on Logistics and Industrial Informatics.

[12]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[13]  Yolanda Carson,et al.  Simulation optimization: methods and applications , 1997, WSC '97.

[14]  Sebastián Lozano,et al.  Metaheuristic optimization frameworks: a survey and benchmarking , 2011, Soft Computing.

[15]  Ganesh K. Venayagamoorthy,et al.  Dynamic, Stochastic, Computational, and Scalable Technologies for Smart Grids , 2011, IEEE Computational Intelligence Magazine.

[16]  J.G. Vlachogiannis,et al.  Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles , 2009, IEEE Transactions on Power Systems.

[17]  Christelle Guéret,et al.  An event-driven optimization framework for dynamic vehicle routing , 2012, Decis. Support Syst..

[18]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[19]  Lixin Tang,et al.  A review of planning and scheduling systems and methods for integrated steel production , 2001, Eur. J. Oper. Res..

[20]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[21]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Vivek Bapat,et al.  The arena product family: enterprise modeling solutions , 1998, WSC '98.

[24]  Michael Affenzeller,et al.  Production fine planning using a solution archive of priority rules , 2011, 3rd IEEE International Symposium on Logistics and Industrial Informatics.

[25]  Thomas Felberbauer,et al.  Integration of flexible interfaces in optimization software frameworks for simulation-based optimization , 2012, Annual Conference on Genetic and Evolutionary Computation.

[26]  Abhijit Gosavi,et al.  Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning , 2003 .

[27]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[28]  Michael Affenzeller,et al.  Simulation-based evolution of resupply and routing policies in rich vendor-managed inventory scenarios , 2013, Central Eur. J. Oper. Res..

[29]  Lixin Tang,et al.  Modelling and a genetic algorithm solution for the slab stack shuffling problem when implementing steel rolling schedules , 2002 .

[30]  Andreas Beham,et al.  Optimizing assembly line supply by integrating warehouse picking and forklift routing using simulation , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[31]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[32]  Ian Rawles The WITNESS/sup R/ toolbox-a tutorial , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[33]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[34]  Michael C. Fu,et al.  Optimization for Simulation: Theory vs. Practice , 2002 .

[35]  Fred W. Glover,et al.  Simulation optimization: a review, new developments, and applications , 2005, Proceedings of the Winter Simulation Conference, 2005..

[36]  M. Affenzeller,et al.  Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms , 2005 .

[37]  Stephan M. Winkler,et al.  Benefits of Plugin-Based Heuristic Optimization Software Systems , 2007, EUROCAST.

[38]  Michael Affenzeller,et al.  Enhanced priority rule synthesis with waiting conditions , 2010 .

[39]  Henri Pierreval,et al.  Facility layout problems: A survey , 2007, Annu. Rev. Control..

[40]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 2000, Springer Berlin Heidelberg.

[41]  Stephan M. Winkler,et al.  Modeling of heuristic optimization algorithms , 2008 .

[42]  Stefan Wagner,et al.  Integrated simulation and optimization in HeuristicLab , 2014 .

[43]  Michael Affenzeller,et al.  Using ERP-driven flow analysis to optimize a constrained facility layout problem , 2010 .

[44]  Michael Affenzeller,et al.  Probabilistic Electric Vehicle Charging Optimized With Genetic Algorithms and a Two-Stage Sampling Scheme , 2013, Int. J. Energy Optim. Eng..

[45]  S. S. Venkata,et al.  Coordinated Charging of Plug-In Hybrid Electric Vehicles to Minimize Distribution System Losses , 2011, IEEE Transactions on Smart Grid.

[46]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[47]  Saïd Salhi,et al.  Inventory routing problems: a logistical overview , 2007, J. Oper. Res. Soc..

[48]  Michael Affenzeller,et al.  Genetic programming enabled evolution of control policies for dynamic stochastic optimal power flow , 2013, GECCO.

[49]  Gilbert Laporte,et al.  A Tabu Search Heuristic for the Static Multi-Vehicle Dial-a-Ride Problem , 2002 .

[50]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[51]  Stephan M. Winkler,et al.  Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications , 2009 .