The Angelman Syndrome Protein Ube3A Regulates Synapse Development by Ubiquitinating Arc

[1]  A. Mortazavi Correction to “Fragile X Syndrome” , 2011 .

[2]  R. Prakash,et al.  Ube3a is required for experience-dependent maturation of the neocortex , 2009, Nature Neuroscience.

[3]  Robert T. Schultz,et al.  Autism genome-wide copy number variation reveals ubiquitin and neuronal genes , 2009, Nature.

[4]  Roberto Malinow,et al.  Synaptic AMPA Receptor Plasticity and Behavior , 2009, Neuron.

[5]  Ann Marie Craig,et al.  Heterosynaptic Molecular Dynamics: Locally Induced Propagating Synaptic Accumulation of CaM Kinase II , 2009, Neuron.

[6]  Steven W. Flavell,et al.  Genome-Wide Analysis of MEF2 Transcriptional Program Reveals Synaptic Target Genes and Neuronal Activity-Dependent Polyadenylation Site Selection , 2008, Neuron.

[7]  Athar N. Malik,et al.  Activity-dependent regulation of inhibitory synapse development by Npas4 , 2008, Nature.

[8]  Michael E. Greenberg,et al.  From Synapse to Nucleus: Calcium-Dependent Gene Transcription in the Control of Synapse Development and Function , 2008, Neuron.

[9]  Eric M. Morrow,et al.  Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry , 2008, Science.

[10]  Richard L. Huganir,et al.  Elongation Factor 2 and Fragile X Mental Retardation Protein Control the Dynamic Translation of Arc/Arg3.1 Essential for mGluR-LTD , 2008, Neuron.

[11]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[12]  J. Gécz,et al.  SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. , 2008, American journal of human genetics.

[13]  M. Bear,et al.  Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome , 2008, The Journal of physiology.

[14]  Mark F. Bear,et al.  Correction of Fragile X Syndrome in Mice , 2007, Neuron.

[15]  Stephen T Warren,et al.  Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors , 2007, Proceedings of the National Academy of Sciences.

[16]  Hidde L Ploegh,et al.  The mouse polyubiquitin gene UbC is essential for fetal liver development, cell‐cycle progression and stress tolerance , 2007, The EMBO journal.

[17]  R. Huganir,et al.  Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Eric C. Griffith,et al.  An RNAi-Based Approach Identifies Molecules Required for Glutamatergic and GABAergic Synapse Development , 2007, Neuron.

[19]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[20]  E. Weeber,et al.  Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation , 2007, Nature Neuroscience.

[21]  Roberto Malinow,et al.  Increased Expression of the Immediate-Early Gene Arc/Arg3.1 Reduces AMPA Receptor-Mediated Synaptic Transmission , 2006, Neuron.

[22]  Jing Wu,et al.  Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors , 2006, Neuron.

[23]  Richard L. Huganir,et al.  Arc/Arg3.1 Interacts with the Endocytic Machinery to Regulate AMPA Receptor Trafficking , 2006, Neuron.

[24]  Eric C. Griffith,et al.  Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation , 2006, Neuron.

[25]  A. Hannan,et al.  Enriched environments, experience-dependent plasticity and disorders of the nervous system , 2006, Nature Reviews Neuroscience.

[26]  A. Beaudet,et al.  Angelman syndrome 2005: Updated consensus for diagnostic criteria , 2006, American journal of medical genetics. Part A.

[27]  Steven W. Flavell,et al.  Activity-Dependent Regulation of MEF2 Transcription Factors Suppresses Excitatory Synapse Number , 2006, Science.

[28]  M. Tranfaglia,et al.  Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP , 2005, Neuropharmacology.

[29]  Eric C. Griffith,et al.  Vav Family GEFs Link Activated Ephs to Endocytosis and Axon Guidance , 2005, Neuron.

[30]  E. M. Cooper,et al.  Biochemical Analysis of Angelman Syndrome-associated Mutations in the E3 Ubiquitin Ligase E6-associated Protein* , 2004, Journal of Biological Chemistry.

[31]  J. Feigon,et al.  Structure of the XPC binding domain of hHR23A reveals hydrophobic patches for protein interaction , 2004, Protein science : a publication of the Protein Society.

[32]  Eric C. Griffith,et al.  Derepression of BDNF Transcription Involves Calcium-Dependent Phosphorylation of MeCP2 , 2003, Science.

[33]  A. Freywald,et al.  Ephrin-A1 Induces c-Cbl Phosphorylation and EphA Receptor Down-Regulation in T Cells1 , 2003, The Journal of Immunology.

[34]  J. Sutcliffe,et al.  Genetics of childhood disorders: XLVII. Autism, part 6: duplication and inherited susceptibility of chromosome 15q11-q13 genes in autism. , 2003, Journal of the American Academy of Child and Adolescent Psychiatry.

[35]  G. Holmes,et al.  Neurobehavioral and Electroencephalographic Abnormalities in Ube3a Maternal-Deficient Mice , 2002, Neurobiology of Disease.

[36]  E. Lander,et al.  ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF , 2000, Nature Genetics.

[37]  A. Haeringen,et al.  Angelman syndrome: a review of clinical and genetic aspects , 1999, Clinical Neurology and Neurosurgery.

[38]  Santhosh K. P. Kumar,et al.  Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Howley,et al.  Identification of HHR23A as a Substrate for E6-associated Protein-mediated Ubiquitination* , 1999, The Journal of Biological Chemistry.

[40]  Gregor Eichele,et al.  Mutation of the Angelman Ubiquitin Ligase in Mice Causes Increased Cytoplasmic p53 and Deficits of Contextual Learning and Long-Term Potentiation , 1998, Neuron.

[41]  J. Sutcliffe,et al.  Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons , 1997, Nature Genetics.

[42]  B. Leventhal,et al.  Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. , 1997, American journal of human genetics.

[43]  Ping Fang,et al.  De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome , 1997, Nature Genetics.

[44]  M. Lalande,et al.  UBE3A/E6-AP mutations cause Angelman syndrome , 1996, Nature Genetics.

[45]  Raoul C. M. Hennekam,et al.  Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP , 1995, Nature.

[46]  M. Scheffner,et al.  The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53 , 1993, Cell.