Scattered Data Interpolation with Multilevel B-Splines

The paper describes a fast algorithm for scattered data interpolation and approximation. Multilevel B-splines are introduced to compute a C/sup 2/ continuous surface through a set of irregularly spaced points. The algorithm makes use of a coarse to fine hierarchy of control lattices to generate a sequence of bicubic B-spline functions whose sum approaches the desired interpolation function. Large performance gains are realized by using B-spline refinement to reduce the sum of these functions into one equivalent B-spline function. Experimental results demonstrate that high fidelity reconstruction is possible from a selected set of sparse and irregular samples.

[1]  G. P. Cressman AN OPERATIONAL OBJECTIVE ANALYSIS SYSTEM , 1959 .

[2]  I. K Crain,et al.  Treatment of non-equispaced two-dimensional data with a digital computer , 1967 .

[3]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[4]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[5]  D. H. McLain,et al.  Two Dimensional Interpolation from Random Data , 1976, Comput. J..

[6]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[7]  L. Schumaker Fitting surfaces to scattered data , 1976 .

[8]  Robert E. Barnhill,et al.  Representation and Approximation of Surfaces , 1977 .

[9]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[10]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[11]  R. Franke A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .

[12]  Richard Franke,et al.  Smooth interpolation of large sets of scattered data , 1980 .

[13]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[14]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[15]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[16]  W. Boehm,et al.  The insertion algorithm , 1985 .

[17]  Tom Lyche,et al.  Knot line refinement algorithms for tensor product B-spline surfaces , 1985, Comput. Aided Geom. Des..

[18]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  T. Lyche,et al.  Making the Oslo algorithm more efficient , 1986 .

[21]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[22]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[23]  A. Ardeshir Goshtasby,et al.  Piecewise cubic mapping functions for image registration , 1987, Pattern Recognit..

[24]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[25]  Peter J. Burt,et al.  Moment images, polynomial fit filters. and the problem of surface interpolation , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[27]  T. Lyche Note on the Oslo algorithm , 1988 .

[28]  George Wolberg,et al.  Digital image warping , 1990 .

[29]  Steven K. Feiner,et al.  Computer graphics: principles and practice (2nd ed.) , 1990 .

[30]  Richard Szeliski,et al.  Fast Surface Interpolation Using Hierarchical Basis Functions , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  L. Schumaker,et al.  Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines , 1991 .

[32]  Gregory M. Nielson,et al.  Scattered Data Interpolation and Applications: A Tutorial and Survey , 1991 .

[33]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[34]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[35]  David R. Forsey,et al.  Tensor products and hierarchical fitting , 1992, Other Conferences.

[36]  WitkinAndrew,et al.  Variational surface modeling , 1992 .

[37]  John F. Hughes,et al.  Direct manipulation of free-form deformations , 1992, SIGGRAPH.

[38]  Gregory M. Nielson,et al.  Scattered data modeling , 1993, IEEE Computer Graphics and Applications.

[39]  Lance Williams,et al.  Animating images with drawings , 1994, SIGGRAPH.

[40]  Sung Yong Shin,et al.  Image morphing using deformable surfaces , 1994, Proceedings of Computer Animation '94.

[41]  E. Arge,et al.  Approximation of scattered data using smooth grid functions , 1995 .

[42]  Heinrich Müller,et al.  Image warping with scattered data interpolation , 1995, IEEE Computer Graphics and Applications.

[43]  Sung Yong Shin,et al.  Image metamorphosis using snakes and free-form deformations , 1995, SIGGRAPH.

[44]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[45]  David R. Forsey,et al.  Surface fitting with hierarchical splines , 1995, TOGS.

[46]  Michael F. Cohen,et al.  Hierarchical and variational geometric modeling with wavelets , 1995, I3D '95.

[47]  Sung Yong Shin,et al.  Image Metamorphosis with Scattered Feature Constraints , 1996, IEEE Trans. Vis. Comput. Graph..

[48]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[49]  Sung Yong Shin,et al.  Image Morphing Using Deformation Techniques , 1996, Comput. Animat. Virtual Worlds.

[50]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .