Historical distribution and host-vector diversity of Francisella tularensis, the causative agent of tularemia, in Ukraine

[1]  J. Blackburn,et al.  Changing Patterns of Human Anthrax in Azerbaijan during the Post-Soviet and Preemptive Livestock Vaccination Eras , 2014, PLoS neglected tropical diseases.

[2]  J. Blackburn,et al.  Informing surveillance for the lowland plague focus in Azerbaijan using a historic dataset , 2013 .

[3]  J. Blackburn,et al.  Evidence of Local Persistence of Human Anthrax in the Country of Georgia Associated with Environmental and Anthropogenic Factors , 2013, PLoS neglected tropical diseases.

[4]  A. Ismailov,et al.  Seroprevalence of tularemia in rural Azerbaijan. , 2012, Vector borne and zoonotic diseases.

[5]  Jason K Blackburn,et al.  Incorporating retrospective clustering into a prospective Cusum methodology for anthrax: evaluating the effects of disease expectation. , 2011, Spatial and spatio-temporal epidemiology.

[6]  Erik Bäck,et al.  Landscape Epidemiology of Tularemia Outbreaks in Sweden , 2009, Emerging infectious diseases.

[7]  P. Imnadze,et al.  Water-Borne Outbreak of Oropharyngeal and Glandular Tularemia in Georgia: Investigation and Follow-up , 2009, Infection.

[8]  S. Gedikoğlu,et al.  Re-emergence of tularemia in Turkey. , 2009, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[9]  A. Sjöstedt Tularemia: History, Epidemiology, Pathogen Physiology, and Clinical Manifestations , 2007, Annals of the New York Academy of Sciences.

[10]  P. Mead,et al.  Epidemiologic and Molecular Analysis of Human Tularemia, United States, 1964–2004 , 2006, Emerging infectious diseases.

[11]  T. Kantardjiev,et al.  Tularemia Outbreak, Bulgaria, 1997–2005 , 2006, Emerging infectious diseases.

[12]  R. Ostfeld,et al.  Spatial epidemiology: an emerging (or re-emerging) discipline. , 2005, Trends in ecology & evolution.

[13]  M. Kulldorff,et al.  A Space–Time Permutation Scan Statistic for Disease Outbreak Detection , 2005, PLoS medicine.

[14]  A. Sjöstedt,et al.  Worldwide Genetic Relationships among Francisella tularensis Isolates Determined by Multiple-Locus Variable-Number Tandem Repeat Analysis , 2004, Journal of bacteriology.

[15]  Z. Černý Changes of the epidemiology and the clinical picture of tularemia in Southern Moravia (the Czech Republic) during the period 1936–1999 , 2004, European Journal of Epidemiology.

[16]  R. Reintjes,et al.  Tularemia Outbreak Investigation in Kosovo: Case Control and Environmental Studies , 2002, Emerging infectious diseases.

[17]  K. K. Goldewijk Estimating global land use change over the past 300 years: The HYDE Database , 2001 .

[18]  G. Ada,et al.  Vaccines and vaccination. , 1988, The New England journal of medicine.

[19]  J. María,et al.  Waterborne outbreak of tularemia associated with crayfish fishing. , 2001, Emerging infectious diseases.

[20]  Khaĭtovich Ab,et al.  Natural focus of tularemia on the Kerchen peninsula (Crimea) , 1981 .

[21]  A. B. Khaitovich,et al.  [Natural focus of tularemia on the Kerchen peninsula (Crimea)]. , 1981, Zhurnal mikrobiologii, epidemiologii, i immunobiologii.

[22]  R. Pollitzer History and incidence of tularemia in the Soviet Union : a review , 1967 .

[23]  N. D. Levine,et al.  NATURAL NIDALITY OF TRANSMISSIBLE DISEASES , 1966 .

[24]  R. Pollitzer A REVIEW OF SELECTED PROBLEMS OF TULAREMIA IN THE SOVIET UNION. PART II/ A. VACCINES AND VACCINATION , 1963 .

[25]  V. M. Stupnitskaya,et al.  NATURAL TULAREMIA FOCI ON THE TERRITORY OF THE UKRAINIAN SSR [ Following is the translation of an article by , 2022 .