Effect of thermally grown oxide (TGO) microstructure on the durability of TBCs with PtNiAl diffusion bond coats

[1]  A. Evans,et al.  On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings , 2005 .

[2]  A. Bartz,et al.  Strength Degradation and Failure Mechanisms of Electron‐Beam Physical‐Vapor‐Deposited Thermal Barrier Coatings , 2004 .

[3]  A. G. Evans,et al.  Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system , 2001 .

[4]  Anette M. Karlsson,et al.  A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems , 2001 .

[5]  E. Jordan,et al.  Stress and shape evolution of irregularities in oxide films on elastic–plastic substrates due to thermal cycling and film growth , 2001 .

[6]  Anthony G. Evans,et al.  Mechanisms controlling the durability of thermal barrier coatings , 2001 .

[7]  David R. Clarke,et al.  Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation , 2000 .

[8]  A. Evans,et al.  The ratcheting of compressed thermally grown thin films on ductile substrates , 2000 .

[9]  P Wright,et al.  Mechanisms governing the performance of thermal barrier coatings , 1999 .

[10]  E. Jordan,et al.  Mechanism of spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier coatings , 1999 .

[11]  F. Pettit,et al.  Thermal Barrier Coatings for the 21st Century , 1999, International Journal of Materials Research.

[12]  H. Grabke,et al.  Oxidation behaviour of NiAl—II. Cavity formation beneath the oxide scale on NiAl of different stoichiometries , 1993 .