Spherical Harmonics for Surface Parametrisation and Remeshing

This paper proposes a novel method for parametrisation and remeshing incomplete and irregular polygonal meshes. Spherical harmonics basis functions are used for parametrisation. This involves least squares fitting of spherical harmonics basis functions to the surface mesh. Tikhonov regularisation is then used to improve the parametrisation before remeshing the surface. Experiments show that the proposed techniques are effective for parametrising and remeshing polygonal meshes.

[1]  Alan L. Yuille,et al.  A regularized solution to edge detection , 1985, J. Complex..

[2]  P. George,et al.  Parametric surface meshing using a combined advancing-front generalized Delaunay approach , 2000 .

[3]  Günther Greiner,et al.  Using most isometric parameterizations for remeshing polygonal surfaces , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[4]  David L. Marcum,et al.  Efficient Generation of High-Quality Unstructured Surface and Volume Grids , 2001, Engineering with Computers.

[5]  Nigel P. Weatherill,et al.  Topology Abstraction of Surface Models for Three-Dimensional Grid Generation , 2001, Engineering with Computers.

[6]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[7]  E. Garboczi Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete , 2002 .

[8]  Kazuhiro Nakahashi,et al.  Direct Surface Triangulation Using Stereolithography Data , 2002 .

[9]  Jean-Christophe Cuillière,et al.  Generation of a finite element MESH from stereolithography (STL) files , 2002, Comput. Aided Des..

[10]  Robin Green,et al.  Spherical Harmonic Lighting: The Gritty Details , 2003 .

[11]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[12]  H. Borouchaki,et al.  Interpolating and meshing 3D surface grids , 2003 .

[13]  Angela Kunoth,et al.  Multilevel regularization of wavelet based fitting of scattered data – some experiments , 2005, Numerical Algorithms.

[14]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[15]  Nigel P. Weatherill,et al.  Enhanced remeshing from STL files with applications to surface grid generation , 2006 .

[16]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[17]  Moo K. Chung,et al.  Large-Scale Modeling of Parametric Surfaces Using Spherical Harmonics , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[18]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[19]  Dorothee P Auer,et al.  A regularized two‐tensor model fit to low angular resolution diffusion images using basis directions , 2008, Journal of magnetic resonance imaging : JMRI.

[20]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[21]  Li Bai,et al.  Fuzzy anatomical connectedness of the brain using single and multiple fibre orientations estimated from diffusion MRI , 2010, Comput. Medical Imaging Graph..

[22]  Christophe Geuzaine,et al.  High‐quality surface remeshing using harmonic maps , 2010 .

[23]  Li Bai,et al.  Brain tractography using Q-ball imaging and graph theory: Improved connectivities through fibre crossings via a model-based approach , 2010, NeuroImage.

[24]  Christophe Geuzaine,et al.  Quality meshing based on STL triangulations for biomedical simulations , 2010 .

[25]  Li Bai,et al.  Reliably Estimating the Diffusion Orientation Distribution Function from High Angular Resolution Diffusion Imaging Data , 2011, MIUA.

[26]  Li Bai,et al.  Direct reconstruction of fibre orientation using discrete ground truth interpolation , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[27]  Joaquim B. Cavalcante Neto,et al.  An Adaptive Parametric Surface Mesh Generation Method Guided by Curvatures , 2013, IMR.

[28]  Liming Chen,et al.  Learning the Spherical Harmonic Features for 3-D Face Recognition , 2013, IEEE Trans. Image Process..

[29]  Bartosz P. Neuman,et al.  Tikhonov regularisation in diffusion signal estimation , 2013 .

[30]  Volker Schmidt,et al.  Structural characterization of particle systems using spherical harmonics , 2015 .