Supercluster A2142 and collapse in action: infalling and merging groups and galaxy transformations
暂无分享,去创建一个
Changbom Park | J. Einasto | M. Gramann | M. Einasto | A. Lahteenmaki | E. Saar | E. Tempel | P. Heinamaki | H. Lietzen | Juhan Kim | B. Deshev
[1] G. Hurier,et al. Coincident Sunyaev–Zel’dovich and Gamma-Ray Signals from Cluster Virial Shocks , 2020, The Astrophysical Journal.
[2] K. Umetsu,et al. Inside a Beehive: The Multiple Merging Processes in the Galaxy Cluster Abell 2142 , 2018, The Astrophysical Journal.
[3] B. Garilli,et al. The progeny of a cosmic titan: a massive multi-component proto-supercluster in formation at z = 2.45 in VUDS , 2018, Astronomy & Astrophysics.
[4] J. C. Muñoz-Cuartas,et al. Galaxy Cluster Mass Reconstruction Project – IV. Understanding the effects of imperfect membership on cluster mass estimation , 2018, Monthly notices of the Royal Astronomical Society.
[5] C. Frenk,et al. The Cosmic Ballet: spin and shape alignments of haloes in the cosmic web , 2018, Monthly Notices of the Royal Astronomical Society.
[6] C. Carilli,et al. Hidden in Plain Sight: A Massive, Dusty Starburst in a Galaxy Protocluster at z = 5.7 in the COSMOS Field , 2018, 1803.08048.
[7] I. Roberts,et al. Red Misfits in the Sloan Digital Sky Survey: Properties of Star-Forming Red Galaxies , 2018, 1803.01027.
[8] Florida,et al. Galaxy growth in a massive halo in the first billion years of cosmic history , 2017, Nature.
[9] Changbom Park,et al. Infalling groups and galaxy transformations in the cluster A2142 , 2017, 1711.07806.
[10] A. Finoguenov,et al. LoCuSS : pre-processing in galaxy groups falling into massive galaxy clusters at z=0.2 , 2017, 1710.04230.
[11] P. Thomas,et al. Characterising and identifying galaxy protoclusters , 2017, 1710.02148.
[12] S. Bamford,et al. Galaxy Cluster Mass Reconstruction Project – III. The impact of dynamical substructure on cluster mass estimates , 2017, 1709.10108.
[13] E. Cooke,et al. Galaxy evolution in protoclusters , 2017, 1709.07009.
[14] A. Finoguenov,et al. LoCuSS: The infall of X-ray groups on to massive clusters , 2017, 1709.04945.
[15] N. Okabe,et al. Galaxy cluster luminosities and colours, and their dependence on cluster mass and merger state , 2017, 1708.05971.
[16] Maria E. S. Pereira,et al. On mass concentrations and magnitude gaps of galaxy systems in the CS82 survey , 2017, 1708.03344.
[17] A. Finoguenov,et al. Galaxy evolution in merging clusters: The passive core of the “Train Wreck” cluster of galaxies, A 520⋆ , 2017, 1707.03208.
[18] J. Aguerri,et al. Are Fossil Groups Early-forming Galaxy Systems? , 2017, 1706.08542.
[19] S. Paltani,et al. Deep Chandra observations of the stripped galaxy group falling into Abell 2142 , 2017, 1705.05844.
[20] U. Keshet,et al. Detection of virial shocks in stacked Fermi-LAT galaxy clusters , 2017, Journal of Cosmology and Astroparticle Physics.
[21] K. Gebhardt,et al. Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr , 2017, 1705.01634.
[22] N. Libeskind,et al. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems , 2017, 1704.04477.
[23] Rory J. E. Smith,et al. Phase-space Analysis in the Group and Cluster Environment: Time Since Infall and Tidal Mass Loss , 2017, 1704.04243.
[24] Rory J. E. Smith,et al. A History of H i Stripping in Virgo: A Phase-space View of VIVA Galaxies , 2017, 1704.00760.
[25] C. Maraston,et al. BOSS Great Wall: morphology, luminosity, and mass , 2017, 1703.08444.
[26] Milano,et al. The two-component giant radio halo in the galaxy cluster Abell 2142 , 2017, 1703.06802.
[27] A. Biviano,et al. OmegaWINGS: The First Complete Census of Post-starburst Galaxies in Clusters in the Local Universe , 2017, 1703.03204.
[28] J. Aguerri,et al. Deep spectroscopy of nearby galaxy clusters – II. The Hercules cluster , 2017, 1702.06165.
[29] S. More,et al. The Halo Boundary of Galaxy Clusters in the SDSS , 2017, 1702.01722.
[30] F. Massaro,et al. FRIICAT: A FIRST catalog of FR II radio galaxies , 2017, 1703.03427.
[31] B. Garilli,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS): Downsizing of the blue cloud and the influence of galaxy size on mass quenching over the last eight billion years , 2016, 1611.07050.
[32] R. Overzier. The realm of the galaxy protoclusters , 2016, 1610.05201.
[33] J. Einasto,et al. Sloan Great Wall as a complex of superclusters with collapsing cores , 2016, 1608.04988.
[34] M. Neyrinck,et al. How Cosmic Web Detachment Drives Galaxy Quenching , 2016 .
[35] Masayuki Tanaka,et al. A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS , 2016, 1605.01439.
[36] C. Maraston,et al. Discovery of a massive supercluster system at z ~ 0.47 , 2016, 1602.08498.
[37] M. Gramann,et al. Friends-of-friends galaxy group finder with membership refinement. Application to the local Universe , 2016, 1601.01117.
[38] B. Altieri,et al. The XXL Survey VII. A supercluster of galaxies at z=0.43 , 2015, 1512.04359.
[39] R. S. Stoica,et al. Bisous model - Detecting filamentary patterns in point processes , 2016, Astron. Comput..
[40] Changbom Park,et al. Horizon Run 4 Simulation: Coupled Evolution of Galaxies and Large-scale Structures of the Universe , 2015, 1508.05107.
[41] E. Cypriano,et al. Structure and dynamics of the supercluster of galaxies SC0028-0005 , 2015, 1507.08301.
[42] J. Einasto,et al. Characteristic density contrasts in the evolution of superclusters. The case of A2142 supercluster , 2015, 1506.05252.
[43] Changbom Park,et al. Unusual A2142 supercluster with a collapsing core: distribution of light and mass , 2015, 1505.07233.
[44] A. Finoguenov,et al. LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING , 2015, 1504.05604.
[45] H. Rottgering,et al. MC2: boosted AGN and star formation activity in CIZA J2242.8+5301, a massive post-merger cluster at z = 0.19 , 2015, 1503.02076.
[46] J. C. Muñoz-Cuartas,et al. Galaxy Cluster Mass Reconstruction Project - II. Quantifying scatter and bias using contrasting mock catalogues , 2015, 1502.07347.
[47] S. Zaroubi,et al. On the definition of superclusters , 2015, 1502.04584.
[48] Rory J. E. Smith,et al. BUDHIES II: a phase-space view of H i gas stripping and star formation quenching in cluster galaxies , 2015, 1501.03819.
[49] G. Mamon,et al. maggie: Models and Algorithms for Galaxy Groups, Interlopers and Environment , 2014, 1412.3364.
[50] H. Hoekstra,et al. The rise and fall of star formation in z ~ 0.2 merging galaxy clusters , 2014, 1410.2891.
[51] S. Paltani,et al. The stripping of a galaxy group diving into the massive cluster A2142 , 2014, 1408.1394.
[52] S. Bamford,et al. OMEGA: OSIRIS Mapping of Emission-Line Galaxies in A901/2 , 2014, Proceedings of the International Astronomical Union.
[53] D. Batuski,et al. The largest gravitationally bound structures: the Corona Borealis supercluster – mass and bound extent , 2014, 1404.1308.
[54] J. C. Muñoz-Cuartas,et al. Galaxy cluster mass reconstruction project – I. Methods and first results on galaxy-based techniques , 2014, Monthly Notices of the Royal Astronomical Society.
[55] H. Hoekstra,et al. THE PHASE SPACE AND STELLAR POPULATIONS OF CLUSTER GALAXIES AT z ∼ 1: SIMULTANEOUS CONSTRAINTS ON THE LOCATION AND TIMESCALE OF SATELLITE QUENCHING , 2014, 1402.7077.
[56] M. Gramann,et al. Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation , 2014, 1402.1350.
[57] Durham,et al. Evolution of the cosmic web , 2014, 1401.7866.
[58] J. Einasto,et al. SDSS superclusters: morphology and galaxy content , 2014, 1401.3226.
[59] A. Edge,et al. JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS , 2013, 1312.6135.
[60] A. Biviano,et al. Mass, velocity anisotropy, and pseudo phase-space density profiles of Abell 2142 (Corrigendum) , 2013, 1311.1210.
[61] K. Gebhardt,et al. ANCIENT LIGHT FROM YOUNG COSMIC CITIES: PHYSICAL AND OBSERVATIONAL SIGNATURES OF GALAXY PROTO-CLUSTERS , 2013, 1310.2938.
[62] R. S. Stoica,et al. Detecting filamentary pattern in the cosmic web: a catalogue of filaments for the SDSS , 2013, 1308.2533.
[63] D. A. García-Hernández,et al. THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.
[64] P. Lopes,et al. SPIDER – IX. Classifying galaxy groups according to their velocity distribution , 2013, 1306.4722.
[65] J. Tinker,et al. STELLAR MASS-GAP AS A PROBE OF HALO ASSEMBLY HISTORY AND CONCENTRATION: YOUTH HIDDEN AMONG OLD FOSSILS , 2013, 1306.3990.
[66] Sana Salous,et al. 5. Data Analysis , 2013 .
[67] M. Hudson,et al. Disentangling satellite galaxy populations using orbit tracking in simulations , 2013, 1301.6757.
[68] Cambridge,et al. Why does the environmental influence on group and cluster galaxies extend beyond the virial radius , 2012, 1210.8407.
[69] R. Wechsler,et al. RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS , 2012, 1209.3309.
[70] K. Pimbblet,et al. Plunging fireworks: Why do infalling galaxies light up on the outskirts of clusters? , 2012, 1209.0972.
[71] M. Einasto,et al. Environments of galaxies in groups within the supercluster-void network , 2012, 1207.7070.
[72] Stefano Borgani,et al. Formation of Galaxy Clusters , 2012, 1205.5556.
[73] J. Einasto,et al. Multimodality in galaxy clusters from SDSS DR8: substructure and velocity distribution , 2012, 1202.4927.
[74] E. Tago,et al. Groups and clusters of galaxies in the SDSS DR8 - Value-added catalogues , 2011, 1112.4648.
[75] W. Couch,et al. MINOR MERGER-INDUCED COLD FRONTS IN ABELL 2142 AND RXJ1720.1+2638 , 2011, 1109.5692.
[76] Aniruddha R. Thakar,et al. ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .
[77] J. Einasto,et al. The cosmic web for density perturbations of various scales , 2010, 1101.0123.
[78] E. Saar,et al. SDSS DR7 superclusters - The catalogues , 2010, 1012.1989.
[79] F. Durret,et al. SPITZER OBSERVATIONS OF A1763. II. CONSTRAINING THE NATURE OF ACTIVITY IN THE CLUSTER-FEEDING FILAMENT WITH VLA AND XMM-NEWTON DATA , 2010, 1009.5753.
[80] R. Somerville,et al. CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.
[81] G. Lake,et al. ACCRETION SHOCKS IN CLUSTERS OF GALAXIES AND THEIR SZ SIGNATURE FROM COSMOLOGICAL SIMULATIONS , 2009, 0902.3323.
[82] Canada.,et al. Multi-wavelength study of X-ray luminous clusters at z ~ 0.3 - I. Star-formation activity of cluster galaxies , 2009, 0902.1534.
[83] R. Nichol,et al. Modeling the color evolution of luminous red galaxies - improvements with empirical stellar spectra , 2008, 0809.1867.
[84] A. Meza,et al. Future evolution of bound superclusters in an accelerating Universe , 2008, 0809.1417.
[85] M. Johnston-Hollitt,et al. Radio observations of the Horologium-Reticulum supercluster – I. A3158: excess star-forming galaxies in a merging cluster? , 2008, 0807.4579.
[86] L. J. Liivamägi,et al. Toward Understanding Rich Superclusters , 2008, 0806.0325.
[87] J. Einasto,et al. Anatomy of luminosity functions: the 2dFGRS example , 2008, 0805.4264.
[88] S. C. Porter,et al. Star formation in galaxies falling into clusters along supercluster-scale filaments , 2008, 0804.4177.
[89] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[90] A. Biviano,et al. To appear in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 03/07/07 STARBURST GALAXIES IN CLUSTER-FEEDING FILAMENTS UNVEILED BY SPITZER , 2022 .
[91] J. Bird,et al. The Lifetime of FR II Sources in Groups and Clusters: Implications for Radio-Mode Feedback , 2007, 0709.2167.
[92] F. Braglia,et al. Flaming, bright galaxies along the filaments of A 2744 , 2007, 0705.0273.
[93] Benjamin D. Johnson,et al. UV Star Formation Rates in the Local Universe , 2007, 0704.3611.
[94] S. C. Porter,et al. Star formation in galaxies along the Pisces‐Cetus Supercluster filaments , 2006, astro-ph/0612357.
[95] A. Meza,et al. Redshift-space limits of bound structures , 2006, astro-ph/0611435.
[96] S. Roweis,et al. K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.
[97] Carlos S. Frenk,et al. The large-scale structure of the Universe , 2006, Nature.
[98] A. Meza,et al. The limits of bound structures in the accelerating Universe , 2006, astro-ph/0603709.
[99] E. Carrasco,et al. Structure and dynamics of the Shapley Supercluster Velocity catalogue, general morphology and mass , 2005, astro-ph/0509903.
[100] C. Wolf,et al. Red-sequence galaxies with young stars and dust: the cluster Abell 901/902 seen with COMBO-17 , 2005, astro-ph/0506150.
[101] Z. Frei,et al. Can Virialization Shocks Be Detected around Galaxy Clusters through the Sunyaev-Zel’dovich Effect? , 2004, astro-ph/0409430.
[102] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[103] J. Brinkmann,et al. The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.
[104] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[105] R. Nichol,et al. The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.
[106] R. Nichol,et al. The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.
[107] R. Nichol,et al. Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.
[108] Enn Saar,et al. Statistics of the Galaxy Distribution , 2001 .
[109] T. Chiueh,et al. Future island universes in a background universe accelerated by a cosmological constant and by quintessence , 2001, astro-ph/0107453.
[110] J. Maze,et al. The Shapley Supercluster. III. Collapse Dynamics and Mass of the Central Concentration , 2000, astro-ph/0007211.
[111] A. Loeb,et al. Cosmic γ-ray background from structure formation in the intergalactic medium , 2000, Nature.
[112] E. Kellogg,et al. Chandra Observation of Abell 2142: Survival of Dense Subcluster Cores in a Merger , 2000, astro-ph/0001269.
[113] Hia,et al. Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.
[114] B. Sidharth,et al. Large Scale Structures in the Universe , 1999, gr-qc/9903053.
[115] A. Fairall. Large-Scale Structures in the Universe , 1998 .
[116] W. Sargent,et al. The Norris Survey of the Corona Borealis Supercluster. II. Galaxy Evolution with Redshift and Environment , 1997, astro-ph/9708153.
[117] J. Bond,et al. How filaments of galaxies are woven into the cosmic web , 1995, Nature.
[118] Joel R. Primack,et al. Dynamical effects of the cosmological constant. , 1991 .
[119] L. Kofman,et al. Theory of adhesion for the large-scale structure of the Universe , 1988, Nature.
[120] P. Peebles. Tests of Cosmological Models Constrained by Inflation , 1984 .
[121] J. Einasto,et al. Giant voids in the Universe , 1982, Nature.
[122] J. Huchra,et al. Groups of galaxies. I. Nearby groups , 1982 .
[123] Erik Tago,et al. Spatial distribution of galaxies and of clusters of galaxies in the southern galactic hemisphere , 1978 .
[124] Edward J. Wollack,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .