Supercluster A2142 and collapse in action: infalling and merging groups and galaxy transformations

Context. Superclusters with collapsing cores represent dynamically evolving environments for galaxies, galaxy groups, and clusters.Aims. We study the dynamical state and properties of galaxies and groups in the supercluster SCl A2142 that has a collapsing core, to understand its possible formation and evolution.Methods. We find the substructure of galaxy groups using normal mixture modelling. We have used the projected phase space (PPS) diagram, spherical collapse model, clustercentric distances, and magnitude gap between the brightest galaxies in groups to study the dynamical state of groups and to analyse group and galaxy properties. We compared the alignments of groups and their brightest galaxies with the supercluster axis.Results. The supercluster core has a radius of about 8h−1Mpc and total massMtot≈ 2.3 × 1015h−1M⊙and is collapsing. Galaxies in groups on the supercluster axis have older stellar populations than off-axis groups, with median stellar ages 4 − 6 and < 4 Gyr, correspondingly. The cluster A2142 and the group Gr8 both host galaxies with the oldest stellar populations among groups in SCl A2142 having the median stellar aget> 8 Gyr. Recently quenched galaxies and active galactic nuclei (AGNs) are mostly located at virial radii or in merging regions of groups, and at clustercentric distancesDc≈ 6h−1Mpc. The most elongated groups lie along the supercluster axis and are aligned with it. Magnitude gaps between the brightest galaxies of groups are less than one magnitude, suggesting that groups in SCl A2142 are dynamically young.Conclusions. The collapsing core of the supercluster, infall of galaxies and groups, and possible merging groups, which affect galaxy properties and may trigger the activity of AGNs, show how the whole supercluster is evolving.

[1]  G. Hurier,et al.  Coincident Sunyaev–Zel’dovich and Gamma-Ray Signals from Cluster Virial Shocks , 2020, The Astrophysical Journal.

[2]  K. Umetsu,et al.  Inside a Beehive: The Multiple Merging Processes in the Galaxy Cluster Abell 2142 , 2018, The Astrophysical Journal.

[3]  B. Garilli,et al.  The progeny of a cosmic titan: a massive multi-component proto-supercluster in formation at z = 2.45 in VUDS , 2018, Astronomy & Astrophysics.

[4]  J. C. Muñoz-Cuartas,et al.  Galaxy Cluster Mass Reconstruction Project – IV. Understanding the effects of imperfect membership on cluster mass estimation , 2018, Monthly notices of the Royal Astronomical Society.

[5]  C. Frenk,et al.  The Cosmic Ballet: spin and shape alignments of haloes in the cosmic web , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  C. Carilli,et al.  Hidden in Plain Sight: A Massive, Dusty Starburst in a Galaxy Protocluster at z = 5.7 in the COSMOS Field , 2018, 1803.08048.

[7]  I. Roberts,et al.  Red Misfits in the Sloan Digital Sky Survey: Properties of Star-Forming Red Galaxies , 2018, 1803.01027.

[8]  Florida,et al.  Galaxy growth in a massive halo in the first billion years of cosmic history , 2017, Nature.

[9]  Changbom Park,et al.  Infalling groups and galaxy transformations in the cluster A2142 , 2017, 1711.07806.

[10]  A. Finoguenov,et al.  LoCuSS : pre-processing in galaxy groups falling into massive galaxy clusters at z=0.2 , 2017, 1710.04230.

[11]  P. Thomas,et al.  Characterising and identifying galaxy protoclusters , 2017, 1710.02148.

[12]  S. Bamford,et al.  Galaxy Cluster Mass Reconstruction Project – III. The impact of dynamical substructure on cluster mass estimates , 2017, 1709.10108.

[13]  E. Cooke,et al.  Galaxy evolution in protoclusters , 2017, 1709.07009.

[14]  A. Finoguenov,et al.  LoCuSS: The infall of X-ray groups on to massive clusters , 2017, 1709.04945.

[15]  N. Okabe,et al.  Galaxy cluster luminosities and colours, and their dependence on cluster mass and merger state , 2017, 1708.05971.

[16]  Maria E. S. Pereira,et al.  On mass concentrations and magnitude gaps of galaxy systems in the CS82 survey , 2017, 1708.03344.

[17]  A. Finoguenov,et al.  Galaxy evolution in merging clusters: The passive core of the “Train Wreck” cluster of galaxies, A 520⋆ , 2017, 1707.03208.

[18]  J. Aguerri,et al.  Are Fossil Groups Early-forming Galaxy Systems? , 2017, 1706.08542.

[19]  S. Paltani,et al.  Deep Chandra observations of the stripped galaxy group falling into Abell 2142 , 2017, 1705.05844.

[20]  U. Keshet,et al.  Detection of virial shocks in stacked Fermi-LAT galaxy clusters , 2017, Journal of Cosmology and Astroparticle Physics.

[21]  K. Gebhardt,et al.  Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr , 2017, 1705.01634.

[22]  N. Libeskind,et al.  Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems , 2017, 1704.04477.

[23]  Rory J. E. Smith,et al.  Phase-space Analysis in the Group and Cluster Environment: Time Since Infall and Tidal Mass Loss , 2017, 1704.04243.

[24]  Rory J. E. Smith,et al.  A History of H i Stripping in Virgo: A Phase-space View of VIVA Galaxies , 2017, 1704.00760.

[25]  C. Maraston,et al.  BOSS Great Wall: morphology, luminosity, and mass , 2017, 1703.08444.

[26]  Milano,et al.  The two-component giant radio halo in the galaxy cluster Abell 2142 , 2017, 1703.06802.

[27]  A. Biviano,et al.  OmegaWINGS: The First Complete Census of Post-starburst Galaxies in Clusters in the Local Universe , 2017, 1703.03204.

[28]  J. Aguerri,et al.  Deep spectroscopy of nearby galaxy clusters – II. The Hercules cluster , 2017, 1702.06165.

[29]  S. More,et al.  The Halo Boundary of Galaxy Clusters in the SDSS , 2017, 1702.01722.

[30]  F. Massaro,et al.  FRIICAT: A FIRST catalog of FR II radio galaxies , 2017, 1703.03427.

[31]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): Downsizing of the blue cloud and the influence of galaxy size on mass quenching over the last eight billion years , 2016, 1611.07050.

[32]  R. Overzier The realm of the galaxy protoclusters , 2016, 1610.05201.

[33]  J. Einasto,et al.  Sloan Great Wall as a complex of superclusters with collapsing cores , 2016, 1608.04988.

[34]  M. Neyrinck,et al.  How Cosmic Web Detachment Drives Galaxy Quenching , 2016 .

[35]  Masayuki Tanaka,et al.  A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS , 2016, 1605.01439.

[36]  C. Maraston,et al.  Discovery of a massive supercluster system at z ~ 0.47 , 2016, 1602.08498.

[37]  M. Gramann,et al.  Friends-of-friends galaxy group finder with membership refinement. Application to the local Universe , 2016, 1601.01117.

[38]  B. Altieri,et al.  The XXL Survey VII. A supercluster of galaxies at z=0.43 , 2015, 1512.04359.

[39]  R. S. Stoica,et al.  Bisous model - Detecting filamentary patterns in point processes , 2016, Astron. Comput..

[40]  Changbom Park,et al.  Horizon Run 4 Simulation: Coupled Evolution of Galaxies and Large-scale Structures of the Universe , 2015, 1508.05107.

[41]  E. Cypriano,et al.  Structure and dynamics of the supercluster of galaxies SC0028-0005 , 2015, 1507.08301.

[42]  J. Einasto,et al.  Characteristic density contrasts in the evolution of superclusters. The case of A2142 supercluster , 2015, 1506.05252.

[43]  Changbom Park,et al.  Unusual A2142 supercluster with a collapsing core: distribution of light and mass , 2015, 1505.07233.

[44]  A. Finoguenov,et al.  LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING , 2015, 1504.05604.

[45]  H. Rottgering,et al.  MC2: boosted AGN and star formation activity in CIZA J2242.8+5301, a massive post-merger cluster at z = 0.19 , 2015, 1503.02076.

[46]  J. C. Muñoz-Cuartas,et al.  Galaxy Cluster Mass Reconstruction Project - II. Quantifying scatter and bias using contrasting mock catalogues , 2015, 1502.07347.

[47]  S. Zaroubi,et al.  On the definition of superclusters , 2015, 1502.04584.

[48]  Rory J. E. Smith,et al.  BUDHIES II: a phase-space view of H i gas stripping and star formation quenching in cluster galaxies , 2015, 1501.03819.

[49]  G. Mamon,et al.  maggie: Models and Algorithms for Galaxy Groups, Interlopers and Environment , 2014, 1412.3364.

[50]  H. Hoekstra,et al.  The rise and fall of star formation in z ~ 0.2 merging galaxy clusters , 2014, 1410.2891.

[51]  S. Paltani,et al.  The stripping of a galaxy group diving into the massive cluster A2142 , 2014, 1408.1394.

[52]  S. Bamford,et al.  OMEGA: OSIRIS Mapping of Emission-Line Galaxies in A901/2 , 2014, Proceedings of the International Astronomical Union.

[53]  D. Batuski,et al.  The largest gravitationally bound structures: the Corona Borealis supercluster – mass and bound extent , 2014, 1404.1308.

[54]  J. C. Muñoz-Cuartas,et al.  Galaxy cluster mass reconstruction project – I. Methods and first results on galaxy-based techniques , 2014, Monthly Notices of the Royal Astronomical Society.

[55]  H. Hoekstra,et al.  THE PHASE SPACE AND STELLAR POPULATIONS OF CLUSTER GALAXIES AT z ∼ 1: SIMULTANEOUS CONSTRAINTS ON THE LOCATION AND TIMESCALE OF SATELLITE QUENCHING , 2014, 1402.7077.

[56]  M. Gramann,et al.  Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation , 2014, 1402.1350.

[57]  Durham,et al.  Evolution of the cosmic web , 2014, 1401.7866.

[58]  J. Einasto,et al.  SDSS superclusters: morphology and galaxy content , 2014, 1401.3226.

[59]  A. Edge,et al.  JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS , 2013, 1312.6135.

[60]  A. Biviano,et al.  Mass, velocity anisotropy, and pseudo phase-space density profiles of Abell 2142 (Corrigendum) , 2013, 1311.1210.

[61]  K. Gebhardt,et al.  ANCIENT LIGHT FROM YOUNG COSMIC CITIES: PHYSICAL AND OBSERVATIONAL SIGNATURES OF GALAXY PROTO-CLUSTERS , 2013, 1310.2938.

[62]  R. S. Stoica,et al.  Detecting filamentary pattern in the cosmic web: a catalogue of filaments for the SDSS , 2013, 1308.2533.

[63]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[64]  P. Lopes,et al.  SPIDER – IX. Classifying galaxy groups according to their velocity distribution , 2013, 1306.4722.

[65]  J. Tinker,et al.  STELLAR MASS-GAP AS A PROBE OF HALO ASSEMBLY HISTORY AND CONCENTRATION: YOUTH HIDDEN AMONG OLD FOSSILS , 2013, 1306.3990.

[66]  Sana Salous,et al.  5. Data Analysis , 2013 .

[67]  M. Hudson,et al.  Disentangling satellite galaxy populations using orbit tracking in simulations , 2013, 1301.6757.

[68]  Cambridge,et al.  Why does the environmental influence on group and cluster galaxies extend beyond the virial radius , 2012, 1210.8407.

[69]  R. Wechsler,et al.  RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS , 2012, 1209.3309.

[70]  K. Pimbblet,et al.  Plunging fireworks: Why do infalling galaxies light up on the outskirts of clusters? , 2012, 1209.0972.

[71]  M. Einasto,et al.  Environments of galaxies in groups within the supercluster-void network , 2012, 1207.7070.

[72]  Stefano Borgani,et al.  Formation of Galaxy Clusters , 2012, 1205.5556.

[73]  J. Einasto,et al.  Multimodality in galaxy clusters from SDSS DR8: substructure and velocity distribution , 2012, 1202.4927.

[74]  E. Tago,et al.  Groups and clusters of galaxies in the SDSS DR8 - Value-added catalogues , 2011, 1112.4648.

[75]  W. Couch,et al.  MINOR MERGER-INDUCED COLD FRONTS IN ABELL 2142 AND RXJ1720.1+2638 , 2011, 1109.5692.

[76]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[77]  J. Einasto,et al.  The cosmic web for density perturbations of various scales , 2010, 1101.0123.

[78]  E. Saar,et al.  SDSS DR7 superclusters - The catalogues , 2010, 1012.1989.

[79]  F. Durret,et al.  SPITZER OBSERVATIONS OF A1763. II. CONSTRAINING THE NATURE OF ACTIVITY IN THE CLUSTER-FEEDING FILAMENT WITH VLA AND XMM-NEWTON DATA , 2010, 1009.5753.

[80]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[81]  G. Lake,et al.  ACCRETION SHOCKS IN CLUSTERS OF GALAXIES AND THEIR SZ SIGNATURE FROM COSMOLOGICAL SIMULATIONS , 2009, 0902.3323.

[82]  Canada.,et al.  Multi-wavelength study of X-ray luminous clusters at z ~ 0.3 - I. Star-formation activity of cluster galaxies , 2009, 0902.1534.

[83]  R. Nichol,et al.  Modeling the color evolution of luminous red galaxies - improvements with empirical stellar spectra , 2008, 0809.1867.

[84]  A. Meza,et al.  Future evolution of bound superclusters in an accelerating Universe , 2008, 0809.1417.

[85]  M. Johnston-Hollitt,et al.  Radio observations of the Horologium-Reticulum supercluster – I. A3158: excess star-forming galaxies in a merging cluster? , 2008, 0807.4579.

[86]  L. J. Liivamägi,et al.  Toward Understanding Rich Superclusters , 2008, 0806.0325.

[87]  J. Einasto,et al.  Anatomy of luminosity functions: the 2dFGRS example , 2008, 0805.4264.

[88]  S. C. Porter,et al.  Star formation in galaxies falling into clusters along supercluster-scale filaments , 2008, 0804.4177.

[89]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[90]  A. Biviano,et al.  To appear in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 03/07/07 STARBURST GALAXIES IN CLUSTER-FEEDING FILAMENTS UNVEILED BY SPITZER , 2022 .

[91]  J. Bird,et al.  The Lifetime of FR II Sources in Groups and Clusters: Implications for Radio-Mode Feedback , 2007, 0709.2167.

[92]  F. Braglia,et al.  Flaming, bright galaxies along the filaments of A 2744 , 2007, 0705.0273.

[93]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[94]  S. C. Porter,et al.  Star formation in galaxies along the Pisces‐Cetus Supercluster filaments , 2006, astro-ph/0612357.

[95]  A. Meza,et al.  Redshift-space limits of bound structures , 2006, astro-ph/0611435.

[96]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[97]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[98]  A. Meza,et al.  The limits of bound structures in the accelerating Universe , 2006, astro-ph/0603709.

[99]  E. Carrasco,et al.  Structure and dynamics of the Shapley Supercluster Velocity catalogue, general morphology and mass , 2005, astro-ph/0509903.

[100]  C. Wolf,et al.  Red-sequence galaxies with young stars and dust: the cluster Abell 901/902 seen with COMBO-17 , 2005, astro-ph/0506150.

[101]  Z. Frei,et al.  Can Virialization Shocks Be Detected around Galaxy Clusters through the Sunyaev-Zel’dovich Effect? , 2004, astro-ph/0409430.

[102]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[103]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[104]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[105]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[106]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[107]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[108]  Enn Saar,et al.  Statistics of the Galaxy Distribution , 2001 .

[109]  T. Chiueh,et al.  Future island universes in a background universe accelerated by a cosmological constant and by quintessence , 2001, astro-ph/0107453.

[110]  J. Maze,et al.  The Shapley Supercluster. III. Collapse Dynamics and Mass of the Central Concentration , 2000, astro-ph/0007211.

[111]  A. Loeb,et al.  Cosmic γ-ray background from structure formation in the intergalactic medium , 2000, Nature.

[112]  E. Kellogg,et al.  Chandra Observation of Abell 2142: Survival of Dense Subcluster Cores in a Merger , 2000, astro-ph/0001269.

[113]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.

[114]  B. Sidharth,et al.  Large Scale Structures in the Universe , 1999, gr-qc/9903053.

[115]  A. Fairall Large-Scale Structures in the Universe , 1998 .

[116]  W. Sargent,et al.  The Norris Survey of the Corona Borealis Supercluster. II. Galaxy Evolution with Redshift and Environment , 1997, astro-ph/9708153.

[117]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[118]  Joel R. Primack,et al.  Dynamical effects of the cosmological constant. , 1991 .

[119]  L. Kofman,et al.  Theory of adhesion for the large-scale structure of the Universe , 1988, Nature.

[120]  P. Peebles Tests of Cosmological Models Constrained by Inflation , 1984 .

[121]  J. Einasto,et al.  Giant voids in the Universe , 1982, Nature.

[122]  J. Huchra,et al.  Groups of galaxies. I. Nearby groups , 1982 .

[123]  Erik Tago,et al.  Spatial distribution of galaxies and of clusters of galaxies in the southern galactic hemisphere , 1978 .

[124]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .