Batteries with high theoretical energy densities

[1]  G. Chaverri The periodic table of elements , 1953 .

[2]  J. Besenhard,et al.  High energy density lithium cells: Part II. Cathodes and complete cells , 1976 .

[3]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[4]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[5]  I. Barin Thermochemical data of pure substances , 1989 .

[6]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[7]  K. Brandt,et al.  Historical development of secondary lithium batteries , 1994 .

[8]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[9]  John Emsley,et al.  Nature's building blocks : an A-Z guide to the elements , 2001 .

[10]  Masaru Miyayama,et al.  Mg Intercalation Properties into V 2 O 5 gel/Carbon Composites under High-Rate Condition , 2003 .

[11]  Nathalie Pereira,et al.  Carbon-Metal Fluoride Nanocomposites Structure and Electrochemistry of FeF3: C , 2003 .

[12]  Glenn G. Amatucci,et al.  Carbon Metal Fluoride Nanocomposites High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries , 2003 .

[13]  P. Balaya,et al.  Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides , 2004 .

[14]  R. Yazami,et al.  Physical characteristics and rate performance of (CFx)n (0.33 < x < 0.66) in lithium batteries , 2006 .

[15]  R. Yazami,et al.  Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries , 2007 .

[16]  Robert Spotnitz,et al.  Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries , 2007 .

[17]  G. Nagasubramanian,et al.  A new chemical approach to improving discharge capacity of Li/(CFx)n cells , 2007 .

[18]  Fadwa Badway,et al.  EELS Spectroscopy of Iron Fluorides and FeFx/C Nanocomposite Electrodes Used in Li-Ion Batteries , 2007, Microscopy and Microanalysis.

[19]  Glenn G. Amatucci,et al.  Fluoride based electrode materials for advanced energy storage devices , 2007 .

[20]  Lifen Xiao,et al.  Hydrothermal Synthesis and Electrochemical Characterization of α-MnO2 Nanorods as Cathode Material for Lithium Batteries , 2008, International Journal of Electrochemical Science.

[21]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[22]  A.M.A.Hashem,et al.  Evaluation of Al and Some of Its Alloys as Anode Materials vs γ-MnO2 as Cathode Material and Ore Produced γ-MnO2 vs Zn Anode in KOH Solution , 2009 .

[23]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[24]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[25]  Yunhong Zhou,et al.  Poly(tetrahydrobenzodithiophene): High discharge specific capacity as cathode material for lithium batteries , 2009 .

[26]  Q. Zhang,et al.  Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries , 2010 .

[27]  David Linden,et al.  Linden's Handbook of Batteries , 2010 .

[28]  M. Fichtner,et al.  Batteries based on fluoride shuttle , 2011 .

[29]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[30]  Jason Graetz,et al.  Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. , 2011, Journal of the American Chemical Society.

[31]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[32]  Jun Liu,et al.  V2O5 Nano‐Electrodes with High Power and Energy Densities for Thin Film Li‐Ion Batteries , 2011 .

[33]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[34]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[35]  Hui Xiong,et al.  Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. , 2012, ACS nano.

[36]  M. Miyayama,et al.  High capacity positive electrodes for secondary Mg-ion batteries , 2012 .

[37]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[38]  M. Fichtner,et al.  Nanostructured Fluorite-Type Fluorides As Electrolytes for Fluoride Ion Batteries , 2013 .

[39]  H. Ahn,et al.  Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries , 2013 .

[40]  Kai Zhang,et al.  Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. , 2014, Inorganic chemistry.

[41]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[42]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[43]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[44]  Lin Gu,et al.  Understanding the Rate Capability of High‐Energy‐Density Li‐Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Materials , 2014 .

[45]  Kevin G. Gallagher,et al.  Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery , 2015 .

[46]  S. Pannala,et al.  Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries , 2016, Scientific Reports.

[47]  Xiulin Fan,et al.  A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte. , 2016, Angewandte Chemie.

[48]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[49]  Siqi Shi,et al.  Multi-scale computation methods: Their applications in lithium-ion battery research and development , 2016 .

[50]  A. Gross,et al.  Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes , 2016 .

[51]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[52]  Feixiang Wu,et al.  Conversion cathodes for rechargeable lithium and lithium-ion batteries , 2017 .

[53]  Lixin Qiao,et al.  Novel Design Concepts of Efficient Mg‐Ion Electrolytes toward High‐Performance Magnesium–Selenium and Magnesium–Sulfur Batteries , 2017 .

[54]  Xin-bo Zhang,et al.  Ultrathin, Lightweight, and Wearable Li-O2 Battery with High Robustness and Gravimetric/Volumetric Energy Density. , 2017, Small.

[55]  Evan M. Erickson,et al.  Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li‐ and Mn‐Rich Cathode Materials for Li‐Ion Batteries , 2018 .

[56]  Martin Winter,et al.  Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems , 2018, Advanced Energy Materials.

[57]  Bingbing Tian,et al.  Reticular V2O5·0.6H2O Xerogel as Cathode for Rechargeable Potassium Ion Batteries. , 2018, ACS applied materials & interfaces.

[58]  Khalil Amine,et al.  Perspectives of automotive battery R&D in China, Germany, Japan, and the USA , 2018 .

[59]  Hao Zhang,et al.  A High‐Capacity O2‐Type Li‐Rich Cathode Material with a Single‐Layer Li2MnO3 Superstructure , 2018, Advanced materials.

[60]  Yong Lu,et al.  Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries. , 2019, Angewandte Chemie.

[61]  Jun Lu,et al.  Bridging the academic and industrial metrics for next-generation practical batteries , 2019, Nature Nanotechnology.

[62]  Lilu Liu,et al.  Practical evaluation of energy densities for sulfide solid-state batteries , 2019, eTransportation.

[63]  Hong Li,et al.  Practical Evaluation of Li-Ion Batteries , 2019, Joule.

[64]  Yaxiang Lu,et al.  Research and development of advanced battery materials in China , 2019 .

[65]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[66]  Liquan Chen,et al.  Li-free Cathode Materials for High Energy Density Lithium Batteries , 2019, Joule.