Elastic modelling in tilted transversely isotropic media with convolutional perfectly matched layer boundary conditions
暂无分享,去创建一个
[1] J. Bancroft,et al. Finite Difference Modeling In Structurally Complex Anisotropic Medium , 2005 .
[2] Robert W. Graves,et al. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.
[3] Patrick Joly,et al. Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .
[4] Chrysoula Tsogka,et al. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .
[5] Roland Martin,et al. An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media , 2008 .
[6] J. Sochacki. Absorbing boundary conditions for the elastic wave equations , 1988 .
[7] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[8] R. Higdon. Absorbing boundary conditions for elastic waves , 1991 .
[9] F. Hu. Absorbing Boundary Conditions , 2004 .
[10] D. Komatitsch,et al. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .
[11] Jean Virieux,et al. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method , 1984 .
[12] Tariq Alkhalifah,et al. An acoustic wave equation for anisotropic media , 2000 .
[13] John B. Schneider,et al. Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .
[14] John L. Volakis,et al. Absorbing boundary conditions , 1995 .
[15] A. Levander. Fourth-order finite-difference P-SV seismograms , 1988 .
[16] M. Gunzburger,et al. Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .
[17] Heiner Igel,et al. Anisotropic wave propagation through finite-difference grids , 1995 .
[18] P. Stoffa,et al. Finite‐difference modeling in transversely isotropic media , 1994 .
[19] Jean Virieux,et al. Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media , 2009 .
[20] Stephen D. Gedney,et al. Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .
[21] D. Komatitsch,et al. Simulation of anisotropic wave propagation based upon a spectral element method , 2000 .
[22] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .
[23] Jeroen Tromp,et al. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .
[24] G. Mur. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.
[25] C. Tsogka,et al. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .
[26] Moshe Reshef,et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .
[27] L. Thomsen. Weak elastic anisotropy , 1986 .
[28] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[29] Changsoo Shin. Sponge boundary condition for frequency-domain modeling , 1995 .
[30] C. Juhlin. Finite‐difference elastic wave propagation in 2D heterogeneous transversely isotropic media1 , 1995 .