Shape memory alloys, Part II: Modeling of polycrystals

[1]  Zdenek P. Bazant,et al.  MICROPLANE MODEL FOR STRAIN-CONTROLLED INELASTIC BEHAVIOUR. , 1984 .

[2]  A. Bekker Impact induced propagation of phase transformation in a shape memory alloy rod , 2002 .

[3]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[4]  E. N. Mamiya,et al.  Three-dimensional model for solids undergoing stress-induced phase transformations , 1998 .

[5]  R. J. Crawford,et al.  Mechanics of engineering materials , 1986 .

[6]  Jordi Ortín,et al.  Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations , 1988 .

[7]  Sanjay Govindjee,et al.  Computational aspects of one-dimensional shape memory alloy modeling with phase diagrams* , 1999 .

[8]  J. Rice,et al.  PARADOXES IN THE APPLICATION OF THERMODYNAMICS TO STRAINED SOLIDS. , 1969 .

[9]  Dimitris C. Lagoudas,et al.  Modeling of the Thermomechanical Response of Active Laminates with SMA Strips Using the Layerwise Finite Element Method , 1997 .

[10]  C. M. Wayman,et al.  The crystallography and boundary structure of interplate-group combinations of 18R martensite variants in Cu-Zn-Al shape memory alloys , 1988 .

[11]  Dimitris C. Lagoudas,et al.  Impact induced phase transformation in shape memory alloys , 2000 .

[12]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[13]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[14]  Friedrich K. Straub,et al.  Applications of torsional shape memory alloy actuators for active rotor blade control: opportunities and limitations , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[15]  Masataka Tokuda,et al.  Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces , 1995 .

[16]  François Trochu,et al.  Nonlinear finite element simulation of superelastic shape memory alloy parts , 1997 .

[17]  Christopher A. Martin,et al.  Shape memory alloy TiNi actuators for twist control of smart wing designs , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Juan Carlos Jimenez-Victory Dynamic analysis of impact induced phase transformation in Shape Memory Alloys using numerical techniques , 1999 .

[19]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[20]  S. Timoshenko,et al.  Mechanics of Materials, 3rd Ed. , 1991 .

[21]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[22]  Morris Cohen,et al.  Criterion for the action of applied stress in the martensitic transformation , 1953 .

[23]  D. Lagoudas,et al.  Modeling of the thermomechanical behavior of porous shape memory alloys , 2001 .

[24]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[25]  Dimitris C. Lagoudas,et al.  Deformations of active flexible rods with embedded line actuators , 1993 .

[26]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media , 1989 .

[27]  Franz Dieter Fischer,et al.  Micromechanical modeling of martensitic transformation in random microstructures , 1998 .

[28]  K. Hwang,et al.  A micromechanics constitutive model of transformation plasticity with shear and dilatation effect , 1991 .

[29]  L. Brinson,et al.  Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach , 1997 .

[30]  F. Falk,et al.  Pseudoelastic stress-strain curves of polycrystalline shape memory alloys calculated from single crystal data , 1989 .

[31]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[32]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[33]  Lallit Anand,et al.  Thermal effects in the superelasticity of crystalline shape-memory materials , 2003 .

[34]  Miinshiou Huang,et al.  A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model , 2000 .

[35]  M. Berveiller,et al.  Structure Calculations Applied to Shape Memory Alloys , 1995 .

[36]  Ferdinando Auricchio,et al.  A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model , 2001 .

[37]  George J. Weng,et al.  A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals , 1998 .

[38]  M. Berveiller,et al.  Comportement élastoplastique des aciers lors de la mise en forme: théorie micromécanique, simulations numériques et résultats expérimentaux , 1994 .

[39]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[40]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[41]  Marcel Berveiller,et al.  Potentiel pseudoelastique et plasticite de transformation martensitique dans les monoet polycristaux metalliques , 1987 .

[42]  D. M. Tracey,et al.  Computational fracture mechanics , 1973 .

[43]  E. Patoor,et al.  THERMOMECHANICAL CONSTITUTIVE EQUATIONS FOR SHAPE MEMORY ALLOYS , 1991 .

[44]  Dimitris C. Lagoudas,et al.  Modeling porous shape memory alloys using micromechanical averaging techniques , 2002 .

[45]  Christian Lexcellent,et al.  Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape memory alloys , 2002 .

[46]  K. Tanaka,et al.  A computational micromechanics study on variant-coalescence in a Cu-Al-Ni shape memory alloy , 1995 .

[47]  Victor Birman,et al.  Review of Mechanics of Shape Memory Alloy Structures , 1997 .

[48]  E. Schnack,et al.  Macroscopic Modeling of Shape Memory Alloys Under Non-Proportional Thermo-Mechanical Loadings , 2002 .

[49]  Cécile Rogueda-Berriet Modelisation thermodynamique du comportement pseudoelastique des alliages a memoire de forme , 1993 .

[50]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[51]  Dimitris C. Lagoudas,et al.  On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material , 2000 .

[52]  M. Berveiller,et al.  Determination of the origin for the dissymmetry observed between tensile and compression tests on shape memory alloys , 1995 .

[53]  C. Liang,et al.  A multi-dimensional constitutive model for shape memory alloys , 1992 .

[54]  C Lexcellent,et al.  Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling , 2002 .

[55]  Dimitris C. Lagoudas,et al.  Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs , 2004 .

[56]  Gerald B. Folland,et al.  Introduction to Partial Differential Equations , 2020 .

[57]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[58]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[59]  P. Manach Etude du comportement thermomécanique d'alliages à mémoire de forme NiTi , 1993 .

[60]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[61]  Shigenori Kobayashi,et al.  Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys , 1986 .

[62]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[63]  Keh Chih Hwang,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. II: Study of the individual phenomena , 1993 .

[64]  Sanjay Govindjee,et al.  A computational model for shape memory alloys , 2000 .

[65]  M. Achenbach A model for an alloy with shape memory , 1989 .

[66]  Sanjay Govindjee,et al.  Non‐linear B‐stability and symmetry preserving return mapping algorithms for plasticity and viscoplasticity , 1991 .

[67]  G. Folland Introduction to Partial Differential Equations , 1976 .

[68]  Christian Lexcellent,et al.  Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams , 2001 .

[69]  Sanjay Govindjee,et al.  Application of a partially relaxed shape memory free energy function to estimate the phase diagram and predict global microstructure evolution , 2002 .

[70]  Sonia Marfia,et al.  Superelastic and Shape Memory Effects in Laminated Shape-Memory-Alloy Beams , 2003 .

[71]  J. K. Knowles,et al.  Impact–induced phase transitions in thermoelastic solids , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[72]  E. Patoor,et al.  Détermination du comportement thermomécanique des alliages à mémoire de forme par optimisation d'un potentiel thermodynamique , 1993 .

[73]  M. Berveiller,et al.  Micromechanical Modelling of the Superthermoelastic Behavior of Materials Undergoing Thermoelastic Phase Transition , 1995 .

[74]  Rolf Lammering,et al.  Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy , 2004 .

[75]  Dimitris C. Lagoudas,et al.  Residual deformation of active structures with SMA actuators , 1999 .

[76]  J. Craggs Applied Mathematical Sciences , 1973 .

[77]  Zdeněk P. Bažant,et al.  Three-dimensional constitutive model for shape memory alloys based on microplane model , 2002 .

[78]  E. P. Popov,et al.  Accuracy and stability of integration algorithms for elastoplastic constitutive relations , 1985 .

[79]  C. Lexcellent,et al.  Thermodynamics of isotropic pseudoelasticity in shape memory alloys , 1998 .

[80]  G. Bourbon,et al.  The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model , 2000 .

[81]  Mohammad Panahandeh,et al.  Coupled thermomechanical simulation of shape memory alloys , 1997, Smart Structures.

[82]  Christian Miehe,et al.  A multi-variant martensitic phase transformation model: formulation and numerical implementation , 2001 .

[83]  Miinshiou Huang,et al.  A multivariant micromechanical model for SMAs Part 2. Polycrystal model , 2000 .

[84]  Kaspar Willam,et al.  Numerical solution of transient nonlinear problems , 1979 .

[85]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[86]  C. Lexcellent,et al.  A general macroscopic description of the thermomechanical behavior of shape memory alloys , 1996 .

[87]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[88]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[89]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[90]  Amr M. Baz,et al.  The Dynamics of Helical Shape Memory Actuators , 1990 .

[91]  T. Roubíček Models of Microstructure Evolution in Shape Memory Alloys , 2004 .

[92]  Eduard Oberaigner,et al.  TRANSFORMATION INDUCED PLASTICITY REVISED: AN UPDATED FORMULATION , 1998 .

[93]  Arun R. Srinivasa,et al.  Mechanics of the inelastic behavior of materials. Part II: inelastic response , 1998 .

[94]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[95]  Dimitris C. Lagoudas,et al.  Transformation of Embedded Shape Memory Alloy Ribbons , 1998 .

[96]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[97]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[98]  C. Lexcellent,et al.  RL-models of pseudoelasticity and their specification for some shape memory solids , 1994 .

[99]  G. Bourbon,et al.  Thermodynamical model of cyclic behaviour of TiNi and CuZnAl shape memory alloys under isothermal undulated tensile tests , 1996 .

[100]  T. Shield Orientation dependence of the pseudoelastic behavior of single crystals of CuAlNi in tension , 1995 .

[101]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[102]  M. Berveiller,et al.  Elastoplasticité des métaux en grandes déformations : comportement global et évolution de la structure interne , 1990 .

[103]  N. Triantafyllidis,et al.  Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity , 1993 .

[104]  Dimitris C. Lagoudas,et al.  On the Correspondence between Micromechanical Models for Isothermal Pseudoelastic Response of Shape Memory Alloys and the Preisach Model for Hysteresis , 1997 .

[105]  J. Shaw A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities , 2002 .

[106]  Sang-Joo Kim,et al.  Cyclic effects in shape-memory alloys: a one-dimensional continuum model , 1997 .

[107]  F. Fischer,et al.  A mesoscale study on the thermodynamic effect of stress on martensitic transformation , 1995 .

[108]  L. C. Brinson,et al.  Phase diagram based description of the hysteresis behavior of shape memory alloys , 1998 .

[109]  James K. Knowles,et al.  Dynamics of propagating phase boundaries: Thermoelastic solids with heat conduction , 1994 .

[110]  Hisaaki Tobushi,et al.  Analysis of thermomechanical behavior of shape memory alloys , 1992 .

[111]  R. Christensen,et al.  Mechanics of composite materials , 1979 .

[112]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[113]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[114]  Amrani Zirifi,et al.  Contributions à l'étude micromécanique des transformations martensitiques thermoélastiques , 1994 .

[115]  E. Patoor,et al.  Thermomechanical behaviour of shape memory alloys , 1988 .

[116]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[117]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[118]  James G. Boyd,et al.  Micromechanics of Active Composites With SMA Fibers , 1994 .

[119]  Rolf Lammering,et al.  Micro and Macromechanical Investigations of CuAlNi Single Crystal and CuAlMnZn Polycrystalline Shape Memory Alloys , 2002 .

[120]  Jordi Ortín,et al.  Thermodynamics of Thermoelastic Martensitic Transformations , 1989 .

[121]  E. J. Graesser,et al.  Shape‐Memory Alloys as New Materials for Aseismic Isolation , 1991 .

[122]  P. Pinsky,et al.  Global analysis methods for the solution of the elastoplastic and viscoplastic dynamic problems , 1982 .

[123]  Inderjit Chopra,et al.  In-flight tracking of helicopter rotor blades using shape memory alloy actuators , 1999 .

[124]  O. Rediniotis,et al.  Experiments and analysis of an active hydrofoil with SMA actuators , 1998 .

[125]  James K. Knowles,et al.  Dynamics of propagating phase boundaries: adiabatic theory for thermoelastic solids , 1994 .

[126]  P. H. Dederichs,et al.  Variational treatment of the elastic constants of disordered materials , 1973 .

[127]  Dimitris C. Lagoudas,et al.  Analysis of phase transformation fronts in SMA composites , 1996, Smart Structures.

[128]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[129]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[130]  G. Bourbon,et al.  Modelling of the Non Isothermal Cyclic Behaviour of a Polycrystalline Cu Zn Al Shape Memory Alloy , 1995 .

[131]  P. Vacher,et al.  STUDY OF PSEUDOELASTIC BEHAVIOUR OF POLYCRISTALLIN SHAPE MEMORY ALLOYS BY RESISTIVITY MEASUREMENTS AND ACOUSTIC EMISSION , 1992 .

[132]  Arun R. Srinivasa,et al.  Mechanics of the inelastic behavior of materials—part 1, theoretical underpinnings , 1998 .

[133]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[134]  D. McDowell,et al.  Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and , 1999 .

[135]  James G. Boyd,et al.  Thermomechanical Response of Shape Memory Composites , 1993, Smart Structures.

[136]  E. Patoor,et al.  Calculation of Pseudoelastic Elements Using a Non-Symmetrical Thermomechanical Transformation Criterion and Associated Rule , 1998 .

[137]  L. Brinson,et al.  A Simplified Multivariant SMA Model Based on Invariant Plane Nature of Martensitic Transformation , 2002 .

[138]  E. Aernoudt,et al.  The Crystallography of the Martensitic Transformation of B.C.C. into 9R: a Generalized Mathematical Model , 1978 .

[139]  Dimitris C. Lagoudas,et al.  Dynamic loading of polycrystalline shape memory alloy rods , 2003 .

[140]  Etienne Patoor,et al.  Micromechanical Modelling of Superelasticity in Shape Memory Alloys , 1996 .