Compton camera imaging and the cone transform: a brief overview

While most of Radon transform applications to imaging involve integrations over smooth sub-manifolds of the ambient space, lately important situations have appeared where the integration surfaces are conical. Three of such applications are single scatter optical tomography, Compton camera medical imaging, and homeland security. In spite of the similar surfaces of integration, the data and the inverse problems associated with these two modalities differ significantly. In this article, we present a brief overview of the mathematics arising in Compton camera imaging. In particular, the emphasis is made on the overdetermined data and flexible geometry of the detectors. For the detailed results, as well as other approaches (e.g., smaller-dimensional data or restricted geometry of detectors) the reader is directed to the relevant publications. Only a brief description and some references are provided for the single scatter optical tomography.

[1]  Peter Kuchment,et al.  Mathematics of Hybrid Imaging: A Brief Review , 2011, 1107.2447.

[2]  Mai K. Nguyen,et al.  New properties of the V-line Radon transform and their imaging applications , 2015 .

[3]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[4]  Rémy Prost,et al.  Analytical inversion of the Compton transform using the full set of available projections , 2009 .

[5]  Gunther Uhlmann,et al.  Hyperbolic geometry and local Dirichlet–Neumann map , 2004 .

[6]  Markus Haltmeier Exact reconstruction formulas for a Radon transform over cones , 2014 .

[7]  Sunghwan Moon,et al.  A series formula for inversion of the V-line Radon transform in a disc , 2013, Comput. Math. Appl..

[8]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[9]  R. Carroll,et al.  A Bayesian approach to the detection of small low emission sources , 2011, Inverse problems.

[10]  Habib Zaidi,et al.  On the V-Line Radon Transform and Its Imaging Applications , 2010, Int. J. Biomed. Imaging.

[11]  Gaik Ambartsoumian,et al.  Exact inversion of the conical Radon transform with a fixed opening angle , 2013, 1309.6581.

[12]  M. Singh,et al.  An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria. , 1983, Medical physics.

[13]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[14]  Charles L. Epstein,et al.  Introduction to magnetic resonance imaging for mathematicians , 2004 .

[15]  Guido Kanschat,et al.  Detecting small low emission radiating sources , 2010, 1012.3373.

[16]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[17]  Guillaume Bal,et al.  Reconstructions for some coupled-physics inverse problems , 2012, Appl. Math. Lett..

[18]  Margaret Cheney,et al.  A Mathematical Tutorial on Synthetic Aperture Radar , 2001, SIAM Rev..

[19]  Carlos Alberto Berenstein,et al.  Integral Geometry in Hyperbolic Spaces and Electrical Impedance Tomography , 1996, SIAM J. Appl. Math..

[20]  Voichita Maxim Filtered Backprojection Reconstruction and Redundancy in Compton Camera Imaging , 2014, IEEE Transactions on Image Processing.

[21]  F. Cakoni,et al.  On a problem of , 2005 .

[22]  S. Helgason Integral Geometry and Radon Transforms , 2010 .

[23]  Otmar Scherzer,et al.  Handbook of Mathematical Methods in Imaging , 2015, Handbook of Mathematical Methods in Imaging.

[24]  Sunghwan Moon Properties of Some Integral Transforms Arising in Tomography , 2013 .

[25]  Moritz Allmaras,et al.  Passive Detection of Small Low-Emission Sources: Two-Dimensional Numerical Case Studies , 2016 .

[26]  J. M. Nightingale,et al.  Gamma-radiation imaging system based on the Compton effect , 1977 .

[27]  Peter W. Michor,et al.  75 years of Radon transform : proceedings of the conference held at the Erwin Schrödinger International Institute for Mathematical Physics in Vienna, August 31-September 4, 1992 , 1994 .

[28]  D. Doria,et al.  An electronically collimated gamma camera for single photon emission computed tomography. Part II: Image reconstruction and preliminary experimental measurements. , 1983, Medical physics.

[29]  Leonid Kunyansky A new SPECT reconstruction algorithm based on the Novikov explicit inversion formula , 2001 .

[30]  Jerrold E. Marsden,et al.  Review: Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, and Nolan R. Wallach, Symplectic geometry and Fourier analysis , 1979 .

[31]  Sunghwan Moon,et al.  Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a Compton camera , 2017 .

[32]  Alexander G. Ramm,et al.  Reconstructing singularities of a function from its Radon transform , 1993 .

[33]  Shlomo Sternberg,et al.  Geometric Asymptotics, Revised edition , 1977 .

[34]  L. Ehrenpreis The Universality of the Radon Transform , 2003 .

[35]  Peter Kuchment,et al.  The Radon Transform and Medical Imaging , 2014, CBMS-NSF regional conference series in applied mathematics.

[36]  Philip J. Bones,et al.  Towards direct reconstruction from a gamma camera based on Compton scattering , 1994, IEEE Trans. Medical Imaging.

[37]  G. Beylkin The inversion problem and applications of the generalized radon transform , 1984 .

[38]  Eric Todd Quinto,et al.  The Radon Transform, Inverse Problems, and Tomography , 2006 .

[39]  John C. Schotland Direct Reconstruction Methods in Optical Tomography , 2012 .

[40]  V. Palamodov Reconstruction from Integral Data , 2016 .

[41]  V. Papanicolaou,et al.  Numerical harmonic analysis on the hyperbolic plane , 2000 .

[42]  J J de Lima,et al.  [Emission computed tomography]. , 1980, Acta medica portuguesa.

[43]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[44]  P. Grangeat Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform , 1991 .

[45]  Inversion of the broken ray transform in the case of energy-dependent attenuation. , 2015, Physics in medicine and biology.

[46]  Fatma Terzioglu,et al.  Some inversion formulas for the cone transform , 2015, 1504.00344.

[47]  H. Tuy AN INVERSION FORMULA FOR CONE-BEAM RECONSTRUCTION* , 1983 .

[48]  Gaik Ambartsoumian,et al.  Inversion of the V-line Radon transform in a disc and its applications in imaging , 2012, Comput. Math. Appl..

[49]  Fatma Terzioglu,et al.  Inversion of weighted divergent beam and cone transforms , 2016, 1612.06772.

[50]  Mai K. Nguyen,et al.  On new {\mathfrak V}-line Radon transforms in \mathbb {R}^{2} and their inversion , 2011 .

[51]  Vadim A. Markel,et al.  Single-scattering optical tomography: simultaneous reconstruction of scattering and absorption. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  S. G. Gindikin,et al.  Integral geometry in affine and projective spaces , 1982 .

[53]  John C. Schotland,et al.  Single-scattering optical tomography , 2007, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[54]  A. Katsevich A GENERAL SCHEME FOR CONSTRUCTING INVERSION ALGORITHMS FOR CONE BEAM CT , 2003 .

[55]  S. Helgason The Radon Transform , 1980 .

[56]  R. Novikov An inversion formula for the attenuated X-ray transformation , 2002 .

[57]  P. Funk Über Flächen mit lauter geschlossenen geodätischen Linien , 1913 .

[59]  L. Parra,et al.  Reconstruction of cone-beam projections from Compton scattered data , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[60]  Souvik Roy,et al.  Numerical Inversion of a Broken Ray Transform Arising in Single Scattering Optical Tomography , 2015, IEEE Transactions on Computational Imaging.

[61]  Peter Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[62]  P. Kuchment,et al.  On local tomography , 1995 .

[63]  Gabor T. Herman Image Reconstruction from Projections , 1979 .

[64]  Charles L. Epstein,et al.  Introduction to the mathematics of medical imaging , 2003 .

[65]  V. Palamodov,et al.  Reconstruction from cone integral transforms , 2017 .

[66]  Fatma Terzioglu,et al.  Three-Dimensional Image Reconstruction from Compton Camera Data , 2016, SIAM J. Imaging Sci..

[67]  Peter Kuchment,et al.  Some problems of integral geometry arising in tomography , 2006 .

[68]  John C. Schotland,et al.  Erratum: Single-scattering optical tomography (Physical Review E - Statistical, Nonlinear, and Soft Matter Physics (2009) 79 (036607)) , 2009 .

[69]  Alexander Katsevich,et al.  Theoretically Exact Filtered Backprojection-Type Inversion Algorithm for Spiral CT , 2002, SIAM J. Appl. Math..

[70]  John C. Schotland,et al.  Inversion formulas for the broken-ray Radon transform , 2010, Inverse Problems.

[71]  Chang-Yeol Jung,et al.  Exact Inversion of the Cone Transform Arising in an Application of a Compton Camera Consisting of Line Detectors , 2016, SIAM J. Imaging Sci..

[72]  Yulia Nekova Georgieva-Hristova Mathematical problems of thermoacoustic and Compton camera imaging , 2010 .

[73]  Markus Haltmeier,et al.  The Radon Transform over Cones with Vertices on the Sphere and Orthogonal Axes , 2016, SIAM J. Appl. Math..

[74]  Bjrn Engquist Encyclopedia of Applied and Computational Mathematics , 2016 .

[75]  Analytic reconstruction algorithms in emission tomography with variable attenuation , 2001 .

[76]  Mai K. Nguyen,et al.  Radon transforms on a class of cones with fixed axis direction , 2005 .

[77]  Joonas Ilmavirta Broken ray tomography in the disc , 2012, 1210.4354.

[78]  Tobias Faust,et al.  Reconstructive Integral Geometry , 2016 .

[79]  V. Sharafutdinov Integral Geometry of Tensor Fields , 1994 .

[80]  B. Borden,et al.  Fundamentals of Radar Imaging , 2009 .

[81]  Mark Hubenthal The Broken Ray Transform on the Square , 2013, 1302.6193.

[82]  S. G. Gindikin,et al.  Selected Topics in Integral Geometry , 2003 .

[83]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[84]  E. T. Quinto,et al.  An Introduction to X-ray tomography and Radon Transforms , 2006 .

[85]  Gunther Uhlmann,et al.  Microlocal techniques in integral geometry , 1990 .

[86]  Bruce D. Smith Image Reconstruction from Cone-Beam Projections: Necessary and Sufficient Conditions and Reconstruction Methods , 1985, IEEE Transactions on Medical Imaging.

[87]  Eric Todd Quinto,et al.  The dependence of the generalized Radon transform on defining measures , 1980 .

[88]  Carlos A. Berenstein,et al.  The Inverse Conductivity Problem and the Hyperbolic X-Ray Transform , 1993 .

[90]  Markus Haltmeier,et al.  Analytic Inversion of a Conical Radon Transform Arising in Application of Compton Cameras on the Cylinder , 2016, SIAM J. Imaging Sci..

[91]  Bruce Smith,et al.  Reconstruction methods and completeness conditions for two Compton data models. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[92]  G T Gullberg,et al.  Application of spherical harmonics to image reconstruction for the Compton camera. , 1998, Physics in medicine and biology.