Evolving Perfect Hash Families: A Combinatorial Viewpoint of Evolving Secret Sharing

Shamir’s threshold secret sharing scheme gives an efficient way to share a secret among n participants such that any k or more of them can reconstruct the secret. For implementation, Shamir’s scheme requires a finite field. Desmedt et al. (AsiaCrypt ’94) proposed a multiplicative secret sharing scheme over non-abelian groups. In this paper, we extend (non-abelian) multiplicative secret sharing to accommodate unbounded number of participants. We introduce a new combinatorial concept of “evolving” Perfect Hash Families and present a secret sharing scheme as a consequence.

[1]  Prof. Dr. Kurt Mehlhorn,et al.  Data Structures and Algorithms 1 , 1984, EATCS.

[2]  Hugo Krawczyk,et al.  Secret Sharing Made Short , 1994, CRYPTO.

[3]  Reihaneh Safavi-Naini,et al.  A New Approach to Robust Threshold RSA Signature Schemes , 1999, ICISC.

[4]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[5]  Giovanni Di Crescenzo,et al.  Sharing Block Ciphers , 2000, ACISP.

[6]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[7]  Ron Steinfeld,et al.  On Secure Multi-party Computation in Black-Box Groups , 2007, CRYPTO.

[8]  Yvo Desmedt,et al.  Efficient Multiplicative Sharing Schemes , 1996, EUROCRYPT.

[9]  Yvo Desmedt,et al.  Shared Generation of Authenticators and Signatures (Extended Abstract) , 1991, CRYPTO.

[10]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[11]  Kurt Mehlhorn,et al.  On the program size of perfect and universal hash functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[12]  Peter Bro Miltersen,et al.  Efficient Multiparty Protocols via Log-Depth Threshold Formulae , 2013, Electron. Colloquium Comput. Complex..

[13]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[14]  J. Komlos,et al.  On the Size of Separating Systems and Families of Perfect Hash Functions , 1984 .

[15]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[16]  Douglas R Stinson,et al.  Some recursive constructions for perfect hash families , 1996 .

[17]  Anat Paskin-Cherniavsky,et al.  Evolving Secret Sharing: Dynamic Thresholds and Robustness , 2017, TCC.

[18]  Yvo Desmedt,et al.  Non-Existence of Homomorphic General Sharing Schemes for Some Key Spaces (Extended Abstract) , 1992, CRYPTO.

[19]  Giovanni Di Crescenzo,et al.  Multiplicative Non-abelian Sharing Schemes and their Application to Threshold Cryptography , 1994, ASIACRYPT.

[20]  Mitsuru Ito,et al.  Multiple assignment scheme for sharing secret , 1993, Journal of Cryptology.

[21]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[22]  Ronald Cramer,et al.  Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups , 2002, CRYPTO.

[23]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[24]  Josh Benaloh,et al.  Secret Sharing Homomorphisms: Keeping Shares of A Secret Sharing , 1986, CRYPTO.

[25]  Ron Steinfeld,et al.  Graph Coloring Applied to Secure Computation in Non-Abelian Groups , 2011, Journal of Cryptology.

[26]  Ronald Cramer,et al.  Black-Box Secret Sharing from Primitive Sets in Algebraic Number Fields , 2005, CRYPTO.

[27]  Moti Yung,et al.  How to share a function securely , 1994, STOC '94.

[28]  Yvo Desmedt,et al.  Perfect Homomorphic Zero-Knowledge Threshold Schemes over any Finite Abelian Group , 1994, SIAM J. Discret. Math..

[29]  C. L. Liu,et al.  Introduction to Combinatorial Mathematics. , 1971 .

[30]  Yvo Desmedt,et al.  Making Code Voting Secure Against Insider Threats Using Unconditionally Secure MIX Schemes and Human PSMT Protocols , 2015, VoteID.

[31]  Huaxiong Wang,et al.  Robust Additive Secret Sharing Schemes over Zm , 2001 .

[32]  Moni Naor,et al.  How to Share a Secret, Infinitely , 2016, IEEE Transactions on Information Theory.