Bringing the nanolaboratory inside electron microscopes

A nanolaboratory is one of the systems to realize various nanoscale fabrications and assemblies to develop novel nanodevices to integrate borderless technologies based on a nanorobotic manipulation system. We have presented the nanolaboratory inside electron microscopes including a transmission electron microscope (TEM), scanning electron microscope (SEM), and environmental-SEM (E-SEM) for three-dimensional (3D) and real-time nanomanipulation, nanoinstrumentation, and nanoassembly. The following is a presentation of our current work of nanomanipulation and nanoassembly based on the hybrid nanorobotic manipulation inside a TEM and an SEM toward carbon nanotube (CNT) applications. Single cell stiffness measurement has been also presented based on the nanorobotic manipulation system inside an E-SEM.

[1]  Guangyong Li,et al.  "Videolized" atomic force microscopy for interactive nanomanipulation and nanoassembly , 2005, IEEE Transactions on Nanotechnology.

[2]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[3]  Hong-Liang Cui,et al.  Review of nanomanipulators for nanomanufacturing , 2006 .

[4]  Fumihito Arai,et al.  DESTRUCTIVE CONSTRUCTION OF NANOSTRUCTURES WITH CARBON NANOTUBES , 2002 .

[5]  Sven Stafström,et al.  Intershell conductance in multiwall carbon nanotubes , 2003 .

[6]  C. H. Chen,et al.  Defects in Carbon Nanostructures , 1994, Science.

[7]  P. Lipke,et al.  Cell Wall Architecture in Yeast: New Structure and New Challenges , 1998, Journal of bacteriology.

[8]  T. Ando,et al.  A high-speed atomic force microscope for studying biological macromolecules in action. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  Nobuo Tanaka,et al.  Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces , 1997 .

[10]  A. Gliozzi,et al.  Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. , 2006, Journal of biotechnology.

[11]  S. Akita,et al.  Carbon nanotube tips for a scanning probe microscope: their fabrication and properties , 1999 .

[12]  新井 史人 Nanofixation with Low Melting Metal Based on Nanorobotic Manipulation , 2006 .

[13]  Fumihito Arai,et al.  3D nanorobotic manipulations of multi-walled carbon nanotubes , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  Lixin Dong,et al.  Shell Engineering of Carbon Nanotube Arrays by Current Driven Breakdown , 2006, 2006 Sixth IEEE Conference on Nanotechnology.

[15]  H. Bussey,et al.  Cell Wall Assembly in Saccharomyces cerevisiae , 2006, Microbiology and Molecular Biology Reviews.

[16]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[17]  Toshio Ando,et al.  High-speed AFM and nano-visualization of biomolecular processes , 2008, Pflügers Archiv - European Journal of Physiology.

[18]  Ning Xi,et al.  Development of augmented reality system for AFM-based nanomanipulation , 2004 .

[19]  Otto Zhou,et al.  Stationary scanning x-ray source based on carbon nanotube field emitters , 2005 .

[20]  Sumio Hosaka,et al.  Surface modification of MoS2 using an STM , 1992 .

[21]  J. Charlier,et al.  Defects in carbon nanotubes. , 2002, Accounts of chemical research.

[22]  Hans W. P. Koops,et al.  Characterization and Application of Materials Grown by Electron-Beam-Induced Deposition , 1994 .

[23]  Fumihito Arai,et al.  Nanorobotic Manipulator Assisted Assembly of Complex Nanostructures based on Carbon Nanotubes , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[24]  Robert Langer,et al.  Application of Micro- and Nano-Electromechanical Devices to Drug Delivery , 2006, Pharmaceutical Research.

[25]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[26]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[27]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[28]  Fumihito Arai,et al.  Towards nanotube linear servomotors , 2006, IEEE Transactions on Automation Science and Engineering.

[29]  Fumihito Arai,et al.  Cutting of carbon nanotubes assisted with oxygen gas inside a scanning electron microscope , 2006 .

[30]  Tom Quirk,et al.  There’s Plenty of Room at the Bottom , 2006, Size Really Does Matter.

[31]  Kim,et al.  Nanotube nanotweezers , 1999, Science.

[32]  Kunio Uchida,et al.  Conical beams from open nanotubes , 1997, Nature.

[33]  Hayashi,et al.  Interlayer spacings in carbon nanotubes. , 1993, Physical review. B, Condensed matter.

[34]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[35]  S. Hell Far-field optical nanoscopy , 2010 .

[36]  H. Craighead Nanoelectromechanical systems. , 2000, Science.

[37]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[38]  Zhen Yao,et al.  Carbon Nanotube Single‐Electron Transistors at Room Temperature. , 2001 .

[39]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[40]  Hideki Sato,et al.  Development of compact field emission scanning electron microscope equipped with multiwalled carbon nanotube bundle cathode , 2007 .

[41]  M. Apuzzo,et al.  Toward the Emergence of Nanoneurosurgery: Part II—Nanomedicine: Diagnostics and Imaging at the Nanoscale Level , 2006, Neurosurgery.

[42]  T. Yamaura,et al.  Image-based autonomous micromanipulation system for arrangement of spheres in a scanning electron microscope , 2004 .

[43]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[44]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[45]  Andrew E. Pelling,et al.  Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae , 2004, Science.

[46]  M. Nakajima,et al.  In-situ single cell mechanical characterization of W303 Yeast cells inside Environmental-SEM , 2007, 2007 7th IEEE Conference on Nanotechnology (IEEE NANO).

[47]  F. Arai,et al.  In situ measurement of Young's modulus of carbon nanotubes inside a TEM through a hybrid nanorobotic manipulation system , 2006, IEEE Transactions on Nanotechnology.

[48]  S. N. Kundra Toward the emergence of nanoneurosurgery: part III-nanomedicine: targeted nanotherapy, nanosurgery and progress toward the realization of nanoneurosurgery. , 2008, Neurosurgery.

[49]  P. Avouris,et al.  Nanotubes for electronics. , 2000, Scientific American.

[50]  K. Eric Drexler,et al.  Engines of Creation , 1986 .

[51]  Metin Sitti,et al.  Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments , 2003 .

[52]  P. Nordlander,et al.  Unraveling Nanotubes: Field Emission from an Atomic Wire , 1995, Science.

[53]  T. Kizuka,et al.  Metal-Insulator Transition in Stable One-Dimensional Arrangements of Single Gold Atoms , 2001 .

[54]  Masato Tomita,et al.  Growth and structure of graphitic tubules and polyhedral particles in arc-discharge , 1993 .

[55]  Quanshui Zheng,et al.  Multiwalled carbon nanotubes as gigahertz oscillators. , 2002, Physical review letters.

[56]  Tomomasa Sato,et al.  Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope , 2002 .

[57]  Y. Nishioka,et al.  Stable multiwalled carbon nanotube electron emitter operating in low vacuum , 2006 .

[58]  Fumihito Arai,et al.  Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations , 2003, Proc. IEEE.

[59]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[60]  Kensuke Tsuchiya,et al.  Micro Handling with Rotational Needle-type Tools under Real Time Observation , 2001 .

[61]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces , 1998 .

[62]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[63]  William Mickelson,et al.  Precision cutting of nanotubes with a low-energy electron beam , 2005 .

[64]  Fumihito Arai,et al.  Nanoactuation of Telescoping Multiwalled Carbon Nanotubes inside Transmission Electron Microscope , 2007 .

[65]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[66]  O. Ikkala,et al.  Functional Materials Based on Self-Assembly of Polymeric Supramolecules , 2002, Science.

[67]  Mihail C. Roco,et al.  Nanostructure Science and Technology , 1999 .

[68]  Fumihito Arai,et al.  Electron-beam-induced deposition with carbon nanotube emitters , 2002 .

[69]  Shankar Ghosh,et al.  Carbon Nanotube Flow Sensors , 2003, Science.

[70]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[71]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[72]  Satoru Suzuki,et al.  Low-Acceleration-Voltage Electron Irradiation Damage in Single-Walled Carbon Nanotubes , 2004 .

[73]  K. Kaski,et al.  Mechanical properties of carbon nanotubes with vacancies and related defects , 2004 .

[74]  Yoshio Bando,et al.  Carbon nanothermometer containing gallium , 2002, Nature.

[75]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[76]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[77]  Fumihito Arai,et al.  In situ Fabrication and Electric Actuation of Telescoping Nanotube inside TEM through Hybrid Nanorobotic Manipulation System , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[78]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[79]  Andre Boorsma,et al.  Cell wall construction in Saccharomyces cerevisiae , 2006, Yeast.