On a high-order Gaussian radial basis function generated Hermite finite difference method and its application

[1]  Zakieh Avazzadeh,et al.  Numerical study of the nonlinear anomalous reaction-subdiffusion process arising in the electroanalytical chemistry , 2021, J. Comput. Sci..

[2]  H. M. Sedighi,et al.  Qualitatively Stable Nonstandard Finite Difference Scheme for Numerical Solution of the Nonlinear Black–Scholes Equation , 2021 .

[3]  H. Ranjbar,et al.  A Hermite collocation method for approximating a class of highly oscillatory integral equations using new Gaussian radial basis functions , 2021, Calcolo.

[4]  Fazlollah Soleymani,et al.  RBF-FD solution for a financial partial-integro differential equation utilizing the generalized multiquadric function , 2020, Comput. Math. Appl..

[5]  Boujemâa Achchab,et al.  Pricing European and American Options by SPH Method , 2020, International Journal of Computational Methods.

[6]  Yinnian He,et al.  A Meshless Local Radial Point Collocation Method for Simulating the Time-Fractional Convection-Diffusion Equations on Surfaces , 2020 .

[7]  A. Soheili,et al.  Lower bound approximation of nonlinear basket option with jump-diffusion , 2020 .

[8]  Markus Faustmann,et al.  Approximating inverse FEM matrices on non-uniform meshes with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathca , 2020, Calcolo.

[9]  S. Abbasbandy,et al.  Quasi Interpolation of radial basis functions-pseudospectral method for solving nonlinear Klein–Gordon and sine-Gordon equations , 2020 .

[10]  Mrinal K. Sen,et al.  A stabilized radial basis-finite difference (RBF-FD) method with hybrid kernels , 2018, Comput. Math. Appl..

[11]  Elisabeth Larsson,et al.  BENCHOP – SLV: the BENCHmarking project in Option Pricing – Stochastic and Local Volatility problems , 2018, Int. J. Comput. Math..

[12]  Lina von Sydow,et al.  A High Order Method for Pricing of Financial Derivatives using Radial Basis Function generated Finite Differences , 2018, Math. Comput. Simul..

[13]  Erik Lehto,et al.  A Radial Basis Function (RBF) Compact Finite Difference (FD) Scheme for Reaction-Diffusion Equations on Surfaces , 2017, SIAM J. Sci. Comput..

[14]  G. Bhatia,et al.  Radial Basis Function Methods for Solving Partial Differential Equations-A Review , 2016 .

[15]  Bengt Fornberg,et al.  Stable computations with flat radial basis functions using vector-valued rational approximations , 2016, J. Comput. Phys..

[16]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[17]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[18]  G. Meyer The Time-Discrete Method of Lines for Options and Bonds:A PDE Approach , 2014 .

[19]  V. Bayona,et al.  Gaussian RBF-FD weights and its corresponding local truncation errors , 2012 .

[20]  P. Nair,et al.  A compact RBF-FD based meshless method for the incompressible Navier—Stokes equations , 2009 .

[21]  K. I. '. Hout,et al.  ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.

[22]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[23]  Bengt Fornberg,et al.  On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..

[24]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[25]  A. I. Tolstykh,et al.  On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .

[26]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[27]  L. Collatz The numerical treatment of differential equations , 1961 .

[28]  Bengt Fornberg,et al.  Solving the Korteweg-de Vries equation with Hermite-based finite differences , 2021, Appl. Math. Comput..

[29]  Michael Trott,et al.  The Mathematica guidebook for programming , 2004 .

[30]  Michael Trott,et al.  The Mathematica GuideBook for Graphics , 2004, Springer New York.

[31]  G. Fasshauer Meshfree Methods , 2004 .

[32]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[33]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .