On a high-order Gaussian radial basis function generated Hermite finite difference method and its application
暂无分享,去创建一个
[1] Zakieh Avazzadeh,et al. Numerical study of the nonlinear anomalous reaction-subdiffusion process arising in the electroanalytical chemistry , 2021, J. Comput. Sci..
[2] H. M. Sedighi,et al. Qualitatively Stable Nonstandard Finite Difference Scheme for Numerical Solution of the Nonlinear Black–Scholes Equation , 2021 .
[3] H. Ranjbar,et al. A Hermite collocation method for approximating a class of highly oscillatory integral equations using new Gaussian radial basis functions , 2021, Calcolo.
[4] Fazlollah Soleymani,et al. RBF-FD solution for a financial partial-integro differential equation utilizing the generalized multiquadric function , 2020, Comput. Math. Appl..
[5] Boujemâa Achchab,et al. Pricing European and American Options by SPH Method , 2020, International Journal of Computational Methods.
[6] Yinnian He,et al. A Meshless Local Radial Point Collocation Method for Simulating the Time-Fractional Convection-Diffusion Equations on Surfaces , 2020 .
[7] A. Soheili,et al. Lower bound approximation of nonlinear basket option with jump-diffusion , 2020 .
[8] Markus Faustmann,et al. Approximating inverse FEM matrices on non-uniform meshes with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathca , 2020, Calcolo.
[9] S. Abbasbandy,et al. Quasi Interpolation of radial basis functions-pseudospectral method for solving nonlinear Klein–Gordon and sine-Gordon equations , 2020 .
[10] Mrinal K. Sen,et al. A stabilized radial basis-finite difference (RBF-FD) method with hybrid kernels , 2018, Comput. Math. Appl..
[11] Elisabeth Larsson,et al. BENCHOP – SLV: the BENCHmarking project in Option Pricing – Stochastic and Local Volatility problems , 2018, Int. J. Comput. Math..
[12] Lina von Sydow,et al. A High Order Method for Pricing of Financial Derivatives using Radial Basis Function generated Finite Differences , 2018, Math. Comput. Simul..
[13] Erik Lehto,et al. A Radial Basis Function (RBF) Compact Finite Difference (FD) Scheme for Reaction-Diffusion Equations on Surfaces , 2017, SIAM J. Sci. Comput..
[14] G. Bhatia,et al. Radial Basis Function Methods for Solving Partial Differential Equations-A Review , 2016 .
[15] Bengt Fornberg,et al. Stable computations with flat radial basis functions using vector-valued rational approximations , 2016, J. Comput. Phys..
[16] Bengt Fornberg,et al. A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.
[17] Bengt Fornberg,et al. Solving PDEs with radial basis functions * , 2015, Acta Numerica.
[18] G. Meyer. The Time-Discrete Method of Lines for Options and Bonds:A PDE Approach , 2014 .
[19] V. Bayona,et al. Gaussian RBF-FD weights and its corresponding local truncation errors , 2012 .
[20] P. Nair,et al. A compact RBF-FD based meshless method for the incompressible Navier—Stokes equations , 2009 .
[21] K. I. '. Hout,et al. ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.
[22] Vadim Linetsky,et al. Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..
[23] Bengt Fornberg,et al. On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..
[24] Bengt Fornberg,et al. Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..
[25] A. I. Tolstykh,et al. On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .
[26] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[27] L. Collatz. The numerical treatment of differential equations , 1961 .
[28] Bengt Fornberg,et al. Solving the Korteweg-de Vries equation with Hermite-based finite differences , 2021, Appl. Math. Comput..
[29] Michael Trott,et al. The Mathematica guidebook for programming , 2004 .
[30] Michael Trott,et al. The Mathematica GuideBook for Graphics , 2004, Springer New York.
[31] G. Fasshauer. Meshfree Methods , 2004 .
[32] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[33] L. Richardson. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .