On the rainbow domination subdivision numbers in graphs

A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃u∈N(v)f(u) = {1, 2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value ω(f) =∑v∈V|f(v)|. The 2-rainbow domination number of a graph G, denoted by γr2(G), is the minimum weight of a 2RDF of G. The 2-rainbow domination subdivision number sdγr2(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the 2-rainbow domination number. It is conjectured that for any connected graph G of order n ≥ 3, sdγr2(G) ≤ γr2(G). In this paper, we first prove this conjecture for some classes of graphs and then we prove that for any connected graph G of order n ≥ 3, sdγr2(G) ≤ 2γr2(G) − 2.

[1]  Michael A. Henning,et al.  RAINBOW DOMINATION IN GRAPHS , 2008 .

[2]  Charles S. Revelle,et al.  Defendens Imperium Romanum: A Classical Problem in Military Strategy , 2000, Am. Math. Mon..

[3]  Stephan Brandt,et al.  Subtrees and Subforests of Graphs , 1994, J. Comb. Theory, Ser. B.

[4]  Tadeja Kraner Sumenjak,et al.  On the 2-rainbow domination in graphs , 2007, Discret. Appl. Math..

[5]  Seyed Mahmoud Sheikholeslami,et al.  New Bounds on the Rainbow Domination Subdivision Number , 2014 .

[6]  Michael A. Henning,et al.  Total domination subdivision numbers of graphs , 2004, Discuss. Math. Graph Theory.

[7]  Seyed Mahmoud Sheikholeslami,et al.  Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph , 2011, Appl. Math. Lett..

[8]  Seyed Mahmoud Sheikholeslami,et al.  Roman domination subdivision number of graphs , 2009 .

[9]  I. Stewart Defend the Roman Empire , 1999 .

[10]  Michael A. Henning,et al.  Total domination subdivision numbers of trees , 2004, Discret. Math..

[11]  Guangjun Xu 2-rainbow domination in generalized Petersen graphs P(n, 3) , 2009, Discret. Appl. Math..

[12]  Douglas F. Rall,et al.  On dominating the Cartesian product of a graph and K2 , 2004, Discuss. Math. Graph Theory.

[13]  Xuding Zhu,et al.  Rainbow domination on trees , 2010, Discret. Appl. Math..

[14]  Nader Jafari Rad,et al.  Bounds on the 2-Rainbow Domination Number of Graphs , 2013, Graphs Comb..

[15]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[16]  Seyed Mahmoud Sheikholeslami,et al.  On the total domination subdivision numbers in graphs , 2010 .

[17]  Seyed Mahmoud Sheikholeslami,et al.  The k-rainbow domatic number of a graph , 2012, Discuss. Math. Graph Theory.

[18]  Yuansheng Yang,et al.  2-rainbow domination of generalized Petersen graphs P(n, 2) , 2009, Discret. Appl. Math..