Approximating the SVP to within a factor (1-1/dim/sup /spl epsiv//) is NP-hard under randomized conditions
暂无分享,去创建一个
[1] Jacques Stern,et al. A Converse to the Ajtai-Dwork Security Proof and its Cryptographic Implications , 1998, Electron. Colloquium Comput. Complex..
[2] Jacques Stern,et al. The hardness of approximate optima in lattices, codes, and systems of linear equations , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[3] Miklós Ajtai,et al. The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract) , 1998, STOC '98.
[4] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[5] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[6] G. L. Dirichlet. Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .
[7] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .
[8] László Lovász,et al. Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.
[9] Jin-Yi Cai,et al. A Relation of Primal-Dual Lattices and the Complexity of Shortest Lattice Vector Problem , 1998, Theor. Comput. Sci..
[10] Cynthia Dwork,et al. A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.
[11] Oded Goldreich,et al. Public-Key Cryptosystems from Lattice Reduction Problems , 1996, CRYPTO.
[12] Miklós Ajtai,et al. Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..
[13] Oded Goldreich,et al. On the limits of non-approximability of lattice problems , 1998, STOC '98.
[14] Daniele Micciancio,et al. The shortest vector in a lattice is hard to approximate to within some constant , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[15] Jeffrey C. Lagarias,et al. The computational complexity of simultaneous Diophantine approximation problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[16] Carl Friedrich Gauß. Carl Friedrich Gauss' Untersuchungen über höhere Arithmetik. (Disquisitiones arithmeticae. Theorematis arithmetici demonstratio nova. Summatio quarundam serierum singularium ó. ). Deutsch hrsg. von H. Mas , 1889 .
[17] Jin-Yi Cai,et al. An improved worst-case to average-case connection for lattice problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[18] Jeffrey C. Lagarias,et al. Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice , 1990, Comb..
[19] C. Hermite. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. , 1850 .