Approximating the SVP to within a factor (1-1/dim/sup /spl epsiv//) is NP-hard under randomized conditions

Recently M. Ajtai showed that to approximate the shortest lattice vector in the l/sub 2/-norm within a factor (1+2(-dim/sup k/)), for a sufficiently large constant k, is NP-hard under randomized reductions. We improve this result to show that to approximate a shortest lattice vector within a factor (1+dim/sup -/spl epsiv//), for any /spl epsiv/>0, is NP-hard under randomized reductions. Our proof also works for arbitrary l/sub p/-norms, 1/spl les/p

[1]  Jacques Stern,et al.  A Converse to the Ajtai-Dwork Security Proof and its Cryptographic Implications , 1998, Electron. Colloquium Comput. Complex..

[2]  Jacques Stern,et al.  The hardness of approximate optima in lattices, codes, and systems of linear equations , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[3]  Miklós Ajtai,et al.  The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract) , 1998, STOC '98.

[4]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[5]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[6]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[7]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[8]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[9]  Jin-Yi Cai,et al.  A Relation of Primal-Dual Lattices and the Complexity of Shortest Lattice Vector Problem , 1998, Theor. Comput. Sci..

[10]  Cynthia Dwork,et al.  A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.

[11]  Oded Goldreich,et al.  Public-Key Cryptosystems from Lattice Reduction Problems , 1996, CRYPTO.

[12]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[13]  Oded Goldreich,et al.  On the limits of non-approximability of lattice problems , 1998, STOC '98.

[14]  Daniele Micciancio,et al.  The shortest vector in a lattice is hard to approximate to within some constant , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[15]  Jeffrey C. Lagarias,et al.  The computational complexity of simultaneous Diophantine approximation problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[16]  Carl Friedrich Gauß Carl Friedrich Gauss' Untersuchungen über höhere Arithmetik. (Disquisitiones arithmeticae. Theorematis arithmetici demonstratio nova. Summatio quarundam serierum singularium ó. ). Deutsch hrsg. von H. Mas , 1889 .

[17]  Jin-Yi Cai,et al.  An improved worst-case to average-case connection for lattice problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[18]  Jeffrey C. Lagarias,et al.  Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice , 1990, Comb..

[19]  C. Hermite Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. , 1850 .