Dramatic substituent effects on the photoluminescence of boron complexes of 2-(benzothiazol-2-yl)phenols.

Substituents can induce dramatic changes in the photoluminescence properties of N,O-chelated boron complexes. Specifically, the boron complexes of 2-(benzothiazol-2-yl)phenols become bright deep blue- and orange-red-emitting materials depending on amino substituents at the 5- and 4-positions of 2-(benzothiazol-2-yl)phenol, respectively. Absorption and emission data show that the resulting boron complexes have little or small overlap between the absorption and emission spectra and, furthermore, X-ray crystal structures for both the blue and orange-red complexes indicate the absence of π-π stacking interaction in the crystal-packing structures. These features endow the boron complexes with bright and strong photoluminescence in the solid state, which distinguishes itself from the typical boron complexes of dipyrromethenes (BODIPYs). A preliminary study indicates that the blue complexes have promising electro-optical characteristics as dopant in an organic light-emitting diode (OLED) device and show chromaticity close to an ideal deep blue. The substituent effects on the photoluminescent properties may be used to tune the desired emission wavelength of related boron or other metal complexes.

[1]  Di Li,et al.  Construction of full-color-tunable and strongly emissive materials by functionalizing a boron-chelate four-ring-fused π-conjugated core , 2012 .

[2]  Jong-Hyun Ahn,et al.  Extremely efficient flexible organic light-emitting diodes with modified graphene anode , 2012, Nature Photonics.

[3]  G. Ulrich,et al.  Synthesis of luminescent 2-(2'-hydroxyphenyl)benzoxazole (HBO) borate complexes. , 2012, Organic letters.

[4]  B. Heyne,et al.  High Stokes shift anilido-pyridine boron difluoride dyes. , 2011, Angewandte Chemie.

[5]  Cui‐Hua Zhao,et al.  Solid-state emissive triarylborane-based BODIPY dyes: photophysical properties and fluorescent sensing for fluoride and cyanide ions. , 2011, Organic & biomolecular chemistry.

[6]  G. Ulrich,et al.  Facile synthesis of highly fluorescent Boranil complexes. , 2011, Organic letters.

[7]  K. Ahn,et al.  A "reactive" ratiometric fluorescent probe for mercury species. , 2011, Organic letters.

[8]  Yu Liu,et al.  Hydroxyphenyl-benzothiazole based full color organic emitting materials generated by facile molecular modification , 2011 .

[9]  Jang‐Joo Kim,et al.  Novel binaphthyl-containing bi-nuclear boron complex with low concentration quenching effect for efficient organic light-emitting diodes. , 2010, Chemical communications.

[10]  Jang‐Joo Kim,et al.  Novel bi-nuclear boron complex with pyrene ligand: red-light emitting as well as electron transporting material in organic light-emitting diodes. , 2010, Organic letters.

[11]  Youngmi Kim,et al.  Photostable BF2-Chelated Fluorophores Based on 2-(2'-Hydroxyphenyl)benzoxazole and 2-(2'-Hydroxyphenyl)benzothiazole , 2009 .

[12]  B. Trofimov,et al.  New Hindered BODIPY Derivatives: Solution and Amorphous State Fluorescence Properties† , 2009 .

[13]  E. Akkaya,et al.  Solid-state emissive BODIPY dyes with bulky substituents as spacers. , 2009, Organic letters.

[14]  Chongmok Lee,et al.  Systematic Electronic Control in Ambipolar Compounds Optimizes Their Photoluminescence Properties: Synthesis, Characterization, and Device Fabrication of Four‐Coordinate Boron Compounds Containing an N,O‐Chelating Oxazolylphenolate Ligand , 2009 .

[15]  Yunqi Liu,et al.  Bulky 4-tritylphenylethynyl substituted boradiazaindacene: pure red emission, relatively large Stokes shift and inhibition of self-quenching. , 2008, Chemical communications.

[16]  Anthony Harriman,et al.  Die vielseitige Chemie von Bodipy‐Fluoreszenzfarbstoffen , 2008 .

[17]  Anthony Harriman,et al.  The chemistry of fluorescent bodipy dyes: versatility unsurpassed. , 2008, Angewandte Chemie.

[18]  Ying Zhou,et al.  Isomeric boron-fluorine complexes with donor-acceptor architecture: strong solid/liquid fluorescence and large Stokes shift. , 2008, Organic letters.

[19]  X. Qian,et al.  Novel fluorescent fluorine-boron complexes: synthesis, crystal structure, photoluminescence, and electrochemistry properties. , 2008, The Journal of organic chemistry.

[20]  Y. Byun,et al.  Highly efficient red electrophosphorescence from a solution-processed zwitterionic cyclometalated iridium(III) complex , 2007 .

[21]  Kevin Burgess,et al.  BODIPY dyes and their derivatives: syntheses and spectroscopic properties. , 2007, Chemical reviews.

[22]  J. Jang,et al.  High efficiency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer , 2007 .

[23]  A. Harriman,et al.  The chemistry of Bodipy: A new El Dorado for fluorescence tools , 2007 .

[24]  Tae-Woo Lee,et al.  Self‐Organized Gradient Hole Injection to Improve the Performance of Polymer Electroluminescent Devices , 2007 .

[25]  Michele Muccini,et al.  J-Aggregation in α-Sexithiophene Submonolayer Films on Silicon Dioxide , 2006 .

[26]  Ben Zhong Tang,et al.  Tunable aggregation-induced emission of diphenyldibenzofulvenes. , 2006, Chemical communications.

[27]  Chain‐Shu Hsu,et al.  Emission enhancement by formation of aggregates in hybrid chromophoric surfactant amphiphile/silica nanocomposites. , 2006, Angewandte Chemie.

[28]  Tsun-Ren Chen,et al.  Syntheses and structures of new luminescent B(III) complexes : BPh2(2-(2-pyridyl)naphtho[b]imidazole) and BF2(2-(2-pyridyl)naphtho[b]imidazole) , 2006 .

[29]  Hongyu Zhang,et al.  Synthesis, structures, and luminescent properties of phenol-pyridyl boron complexes. , 2006, Inorganic chemistry.

[30]  Thomas Metz,et al.  Molecular mechanism of the solid-state fluorescence behavior of the organic pigment yellow 101 and its derivatives. , 2005, Angewandte Chemie.

[31]  L. Lorenz,et al.  Molekularer Mechanismus der Festkörperfluoreszenz des organischen Pigments Yellow 101 und seiner Derivate , 2005 .

[32]  D. Magde,et al.  Luminescent silole nanoparticles as chemoselective sensors for Cr(VI). , 2005, Journal of the American Chemical Society.

[33]  A. Roda,et al.  Pyrromethene dialkynyl borane complexes for "cascatelle" energy transfer and protein labeling. , 2005, Angewandte Chemie.

[34]  P. Chou,et al.  Rational Color Tuning and Luminescent Properties of Functionalized Boron‐Containing 2‐Pyridyl Pyrrolide Complexes , 2005 .

[35]  G. Ulrich,et al.  Highly efficient energy transfer to a novel organic dye in OLED devices , 2004 .

[36]  B. Armitage,et al.  DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization. , 2004, Accounts of chemical research.

[37]  A. Bard,et al.  Electrogenerated Chemiluminescence 71. Photophysical, Electrochemical, and Electrogenerated Chemiluminescent Properties of Selected Dipyrromethene-BF2 Dyes , 2003 .

[38]  Sang-Don Jung,et al.  Enhanced emission and its switching in fluorescent organic nanoparticles. , 2002, Journal of the American Chemical Society.

[39]  R. Thummel,et al.  Tuning the Luminescence and Electroluminescence of Diphenylboron Complexes of 5-Substituted 2-(2‘-Pyridyl)indoles , 2002 .

[40]  Yu Liu,et al.  Highly efficient white organic electroluminescence from a double-layer device based on a boron hydroxyphenylpyridine complex. , 2002, Angewandte Chemie.

[41]  Suning Wang,et al.  Syntheses, Structures, and Electroluminescence of New Blue/Green Luminescent Chelate Compounds: Zn(2-py-in)2(THF), BPh2(2-py-in), Be(2-py-in)2, and BPh2(2-py-aza) [2-py-in = 2-(2-pyridyl)indole; 2-py-aza = 2-(2-pyridyl)-7-azaindole] , 2000 .

[42]  D. Whitten Photochemistry and photophysics of trans-stilbene and related alkenes in surfactant assemblies , 1993 .

[43]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[44]  M. Piva,et al.  2‐(4‐alkylamido‐2‐hydroxyphenyl)benz‐X‐azoles as intermediates for the synthesis of dyes , 1983 .

[45]  E. W. Meijer,et al.  Hierarchical Order in Supramolecular Assemblies of Hydrogen-Bonded Oligo(p-phenylene vinylene)s , 2001 .

[46]  Yanqin Li,et al.  A mixed pyridine–phenol boron complex as an organic electroluminescent material , 2000 .

[47]  F. Hirayama,et al.  Actinometric determination of absolute fluorescence quantum yields , 1983 .

[48]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .