Comparative Genomics of Gene Regulation—conservation and Divergence of Cis-regulatory Information This Review Comes from a Themed Issue on Genomes and Evolution Edited Main Text Conflict of Interest

We recently witnessed a tremendous increase in genomics studies on gene regulation and in entirely sequenced genomes from closely related species. This has triggered analyses that suggest a wide range of evolutionary dynamics of gene regulation, from rapid turnover of transcription-factor binding sites to conservation of enhancer function across large evolutionary distances. Many examples show that enhancers can evolve beyond recognizable sequence similarity while retaining function. However, bioinformatics approaches are increasingly able to detect conserved regulatory elements through characteristic evolutionary sequence signatures. Cis-regulatory changes are also a major source of morphological evolution, which might be facilitated by many biochemically functional elements that are selectively neutral and by the buffering function of redundant enhancers and 'shadow' enhancers.

[1]  Robert P Zinzen,et al.  Divergence in cis-regulatory networks: taking the 'species' out of cross-species analysis , 2008, Genome Biology.

[2]  Venky N. Iyer,et al.  Sepsid even-skipped Enhancers Are Functionally Conserved in Drosophila Despite Lack of Sequence Conservation , 2008, PLoS genetics.

[3]  M. Cole,et al.  Evolution of the holozoan ribosome biogenesis regulon , 2008, BMC Genomics.

[4]  Alan M. Moses,et al.  Position specific variation in the rate of evolution in transcription factor binding sites , 2003, BMC Evolutionary Biology.

[5]  Benedict Paten,et al.  The discovery, positioning and verification of a set of transcription-associated motifs in vertebrates , 2005, Genome Biology.

[6]  Justin Crocker,et al.  Evolution Acts on Enhancer Organization to Fine-Tune Gradient Threshold Readouts , 2008, PLoS biology.

[7]  Ewan Birney,et al.  In Vivo Validation of a Computationally Predicted Conserved Ath5 Target Gene Set , 2007, PLoS genetics.

[8]  S. Fisher,et al.  Conservation of RET Regulatory Function from Human to Zebrafish Without Sequence Similarity , 2006, Science.

[9]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[10]  Olivier Elemento,et al.  Revealing post-transcriptional regulatory interactions through network-level conservation , 2005 .

[11]  Sean B. Carroll,et al.  The Evolution of Gene Regulation Underlies a Morphological Difference between Two Drosophila Sister Species , 2008, Cell.

[12]  Saurabh Sinha,et al.  Evolution of Regulatory Sequences in 12 Drosophila Species , 2009, PLoS genetics.

[13]  A. McGregor,et al.  Morphological evolution through multiple cis-regulatory mutations at a single gene , 2007, Nature.

[14]  D. W. Knowles,et al.  Transcription Factors Bind Thousands of Active and Inactive Regions in the Drosophila Blastoderm , 2008, PLoS biology.

[15]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[16]  S. Harrison,et al.  An Atomic Model of the Interferon-β Enhanceosome , 2007, Cell.

[17]  E. Liu,et al.  Evolution of the mammalian transcription factor binding repertoire via transposable elements. , 2008, Genome research.

[18]  Albert Erives,et al.  Non-Homologous Structured CRMs from the Ciona Genome , 2009, J. Comput. Biol..

[19]  David A. Nix,et al.  Large-Scale Turnover of Functional Transcription Factor Binding Sites in Drosophila , 2006, PLoS Comput. Biol..

[20]  J. Posakony,et al.  Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. , 1994, Genes & development.

[21]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[22]  N. Slonim,et al.  A universal framework for regulatory element discovery across all genomes and data types. , 2007, Molecular cell.

[23]  A. Löytynoja,et al.  Phylogeny-Aware Gap Placement Prevents Errors in Sequence Alignment and Evolutionary Analysis , 2008, Science.

[24]  M. Kreitman,et al.  Functional Evolution of a cis-Regulatory Module , 2005, PLoS biology.

[25]  M. Levine,et al.  Conservation of enhancer location in divergent insects , 2009, Proceedings of the National Academy of Sciences.

[26]  Michael B. Eisen,et al.  Big Genomes Facilitate the Comparative Identification of Regulatory Elements , 2009, PloS one.

[27]  Fangxue Sherry He,et al.  Systematic identification of mammalian regulatory motifs' target genes and functions , 2008, Nature Methods.

[28]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[29]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[30]  M. Levine,et al.  Shadow Enhancers as a Source of Evolutionary Novelty , 2008, Science.

[31]  S. Carroll Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution , 2008, Cell.

[32]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.

[33]  Justin Crocker,et al.  A Closer Look at the eve Stripe 2 Enhancers of Drosophila and Themira , 2008, PLoS genetics.

[34]  Christopher D. Brown,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Table S1 References Functional Architecture and Evolution of Transcriptional Elements That Drive Gene Coexpression , 2022 .

[35]  Xiaohui Xie,et al.  MotifMap: a human genome-wide map of candidate regulatory motif sites , 2009, Bioinform..

[36]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[37]  Axel Visel,et al.  Functional autonomy of distant-acting human enhancers. , 2009, Genomics.

[38]  G. Wray The evolutionary significance of cis-regulatory mutations , 2007, Nature Reviews Genetics.

[39]  D. Gifford,et al.  Tissue-specific transcriptional regulation has diverged significantly between human and mouse , 2007, Nature Genetics.

[40]  N. Patel,et al.  Evidence for stabilizing selection in a eukaryotic enhancer element , 2000, Nature.

[41]  W. Miller,et al.  Finding cis-regulatory elements using comparative genomics: some lessons from ENCODE data. , 2007, Genome research.

[42]  Michael B. Eisen,et al.  A Careful Look at Binding Site Reorganization in the even-skipped Enhancers of Drosophila and Sepsids , 2008, PLoS genetics.

[43]  Lior Pachter,et al.  Combining statistical alignment and phylogenetic footprinting to detect regulatory elements , 2008, Bioinform..

[44]  Manolis Kellis,et al.  Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. , 2007, Genes & development.

[45]  Manolis Kellis,et al.  Reliable prediction of regulator targets using 12 Drosophila genomes. , 2007, Genome research.

[46]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[47]  Oliver Hobert,et al.  CisOrtho: A program pipeline for genome-wide identification of transcription factor target genes using phylogenetic footprinting , 2004, BMC Bioinformatics.

[48]  M. Suchard,et al.  Alignment Uncertainty and Genomic Analysis , 2008, Science.

[49]  Michael P. Eichenlaub,et al.  A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. , 2006, Developmental cell.

[50]  Gary D. Stormo,et al.  DNA binding sites: representation and discovery , 2000, Bioinform..

[51]  Xiaohui Xie,et al.  Identifying novel constrained elements by exploiting biased substitution patterns , 2009, Bioinform..

[52]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[53]  Stephen C. J. Parker,et al.  Local DNA Topography Correlates with Functional Noncoding Regions of the Human Genome , 2009, Science.

[54]  D. Haussler,et al.  A distal enhancer and an ultraconserved exon are derived from a novel retroposon , 2006, Nature.

[55]  Michael A. Beer,et al.  Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b. , 2008, Genome research.

[56]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[57]  Michael D. Wilson,et al.  Species-Specific Transcription in Mice Carrying Human Chromosome 21 , 2008, Science.

[58]  E. Davidson,et al.  Gene Regulatory Networks and the Evolution of Animal Body Plans , 2006, Science.

[59]  Eugene Berezikov,et al.  CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting. , 2003, Genome research.

[60]  D. Haussler,et al.  Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53 , 2007, Proceedings of the National Academy of Sciences.

[61]  Xin He,et al.  MORPH: Probabilistic Alignment Combined with Hidden Markov Models of cis-Regulatory Modules , 2007, PLoS Comput. Biol..

[62]  E. Ukkonen,et al.  Genome-wide Prediction of Mammalian Enhancers Based on Analysis of Transcription-Factor Binding Affinity , 2006, Cell.

[63]  Mikhail A. Roytberg,et al.  Analysis of Sequence Conservation at Nucleotide Resolution , 2007, PLoS Comput. Biol..

[64]  A. Visel,et al.  Ultraconservation identifies a small subset of extremely constrained developmental enhancers , 2008, Nature Genetics.

[65]  R. Britten,et al.  Regulation of gene expression: possible role of repetitive sequences. , 1979, Science.

[66]  S. Salzberg,et al.  Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura , 2004, Genome Biology.

[67]  D. Arendt The evolution of cell types in animals: emerging principles from molecular studies , 2008, Nature Reviews Genetics.

[68]  David N Arnosti,et al.  Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? , 2005, Journal of cellular biochemistry.