How to obtain labeled proteins and what to do with them.

We review new and established methods for the chemical modification of proteins in living cells and highlight recent applications. The review focuses on tag-mediated protein labeling methods, such as the tetracysteine tag and SNAP-tag, and new developments in this field such as intracellular labeling with lipoic acid ligase. Recent promising advances in the incorporation of unnatural amino acids into proteins are also briefly discussed. We describe new tools using tag-mediated labeling methods including the super-resolution microscopy of tagged proteins, the study of the interactions of proteins and protein domains, the subcellular targeting of synthetic ion sensors, and the generation of new semisynthetic metabolite sensors. We conclude with a view on necessary future developments, with one example being the selective labeling of non-tagged, native proteins in complex protein mixtures.

[1]  M. Sheetz,et al.  In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag , 2005, Nature Methods.

[2]  Hiroshi Nonaka,et al.  Site-specific covalent labeling of His-tag fused proteins with a reactive Ni(II)-NTA probe. , 2009, Chemical communications.

[3]  I. Hamachi,et al.  Ligand-directed tosyl chemistry for protein labeling in vivo. , 2009, Nature chemical biology.

[4]  Philippe Sansonetti,et al.  Secretion of type III effectors into host cells in real time , 2005, Nature Methods.

[5]  László Fésüs,et al.  Phage display selection of efficient glutamine‐donor substrate peptides for transglutaminase 2 , 2006, Protein science : a publication of the Protein Society.

[6]  Nediljko Budisa,et al.  Azatryptophans endow proteins with intrinsic blue fluorescence , 2008, Proceedings of the National Academy of Sciences.

[7]  G. Davis,et al.  Transgenically Encoded Protein Photoinactivation (FlAsH-FALI) Acute Inactivation of Synaptotagmin I , 2002, Neuron.

[8]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[9]  G. Los,et al.  Direct pH measurements by using subcellular targeting of 5(and 6-) carboxyseminaphthorhodafluor in mammalian cells. , 2009, BioTechniques.

[10]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[11]  Neil L Kelleher,et al.  Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Weibel,et al.  Studying the Dynamics of Flagella in Multicellular Communities of Escherichia coli by Using Biarsenical Dyes , 2009, Applied and Environmental Microbiology.

[13]  G. Rey,et al.  Subunit-specific surface mobility of differentially labeled AMPA receptor subunits. , 2008, European journal of cell biology.

[14]  Arnaud Gautier,et al.  Selective cross-linking of interacting proteins using self-labeling tags. , 2009, Journal of the American Chemical Society.

[15]  M. Howarth,et al.  Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin , 2008, Nature Protocols.

[16]  Hidde L. Ploegh,et al.  Site-Specific N- and C-Terminal Labeling of a Single Polypeptide Using Sortases of Different Specificity , 2009, Journal of the American Chemical Society.

[17]  Theo Lasser,et al.  Targeted Photoswitchable Probe for Nanoscopy of Biological Structures , 2010, Chembiochem : a European journal of chemical biology.

[18]  M. Scott,et al.  Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium , 2009, The Journal of cell biology.

[19]  Roger Y Tsien,et al.  Genetically targeted chromophore-assisted light inactivation , 2003, Nature Biotechnology.

[20]  M. Dyba,et al.  In vivo labeling method using a genetic construct for nanoscale resolution microscopy. , 2009, Biophysical journal.

[21]  Robert E Campbell,et al.  New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. , 2002, Journal of the American Chemical Society.

[22]  Michael Z. Lin,et al.  Selective labeling of proteins with chemical probes in living cells. , 2008, Physiology.

[23]  Erik A. Rodriguez,et al.  Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors. , 2009, Biophysical journal.

[24]  Daniel B. Fried,et al.  Bipartite Tetracysteine Display Requires Site Flexibility for ReAsH Coordination , 2009, Chembiochem : a European journal of chemical biology.

[25]  Jan Vogelsang,et al.  Make them blink: probes for super-resolution microscopy. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  A. Ting,et al.  Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species. , 2008, Journal of the American Chemical Society.

[27]  R. Tsien,et al.  Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters , 2008, Proceedings of the National Academy of Sciences.

[28]  K. Johnsson,et al.  Indo-1 derivatives for local calcium sensing. , 2009, ACS chemical biology.

[29]  Hidde L Ploegh,et al.  Sortagging: a versatile method for protein labeling. , 2007, Nature chemical biology.

[30]  G. Lemercier,et al.  Inducing and sensing protein--protein interactions in living cells by selective cross-linking. , 2007, Angewandte Chemie.

[31]  Teruyuki Nagamune,et al.  Site‐Specific Protein Modification on Living Cells Catalyzed by Sortase , 2008, Chembiochem : a European journal of chemical biology.

[32]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[33]  L. Gierasch,et al.  Cross-strand split tetra-Cys motifs as structure sensors in a beta-sheet protein. , 2008, Chemistry & biology.

[34]  N. Johnsson,et al.  Specific labeling of cell surface proteins with chemically diverse compounds. , 2004, Journal of the American Chemical Society.

[35]  C. Bertozzi,et al.  Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes , 2007, Nature Biotechnology.

[36]  H. Ploegh,et al.  Site‐Specific Protein Labeling via Sortase‐Mediated Transpeptidation , 2009, Current protocols in protein science.

[37]  Debasis Panda,et al.  Biarsenical Labeling of Vesicular Stomatitis Virus Encoding Tetracysteine-Tagged M Protein Allows Dynamic Imaging of M Protein and Virus Uncoating in Infected Cells , 2009, Journal of Virology.

[38]  N. Tinel,et al.  Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization , 2008, Nature Methods.

[39]  Fei Liu,et al.  Labeling proteins with small molecules by site-specific posttranslational modification. , 2004, Journal of the American Chemical Society.

[40]  R. Fetter,et al.  Clathrin Dependence of Synaptic-Vesicle Formation at the Drosophila Neuromuscular Junction , 2008, Current Biology.

[41]  L. Burdine,et al.  Physical and Functional Interactions of Monoubiquitylated Transactivators with the Proteasome*♦ , 2008, Journal of Biological Chemistry.

[42]  A. McMahon,et al.  An eight residue fragment of an acyl carrier protein suffices for post-translational introduction of fluorescent pantetheinyl arms in protein modification in vitro and in vivo. , 2008, Journal of the American Chemical Society.

[43]  Patrick Rodriguez,et al.  Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Elizabeth M. Nolan,et al.  Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. , 2008, Journal of the American Chemical Society.

[45]  J. Ellenberg,et al.  Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells. , 2009, ACS chemical biology.

[46]  A. Schepartz,et al.  Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. , 2009, Journal of the American Chemical Society.

[47]  M. Sheetz,et al.  An in vivo covalent TMP-tag based on proximity-induced reactivity. , 2009, ACS chemical biology.

[48]  S. Hell,et al.  Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. , 2010, Biophysical journal.

[49]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[50]  P. Silver,et al.  Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. , 2007, ACS chemical biology.

[51]  Marcus Fehr,et al.  Visualization of maltose uptake in living yeast cells by fluorescent nanosensors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[53]  K. Johnsson,et al.  Fura-2FF-based calcium indicator for protein labeling. , 2010, Organic & biomolecular chemistry.

[54]  M. Maki,et al.  Screening for the Preferred Substrate Sequence of Transglutaminase Using a Phage-displayed Peptide Library , 2006, Journal of Biological Chemistry.

[55]  L. Burdine,et al.  Label transfer chemistry for the characterization of protein-protein interactions. , 2007, Journal of the American Chemical Society.

[56]  H. Nonaka,et al.  FLAG-tag selective covalent protein labeling via a binding-induced acyl-transfer reaction. , 2009, Bioorganic & medicinal chemistry letters.

[57]  B. Cravatt,et al.  Activity-based protein profiling for the functional annotation of enzymes , 2007, Nature Methods.

[58]  S. Jakobs,et al.  Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging. , 2004, Molecular biology of the cell.

[59]  I. Mellman,et al.  Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells , 2009, The Journal of cell biology.

[60]  Samuel Thompson,et al.  A fluorophore ligase for site-specific protein labeling inside living cells , 2010, Proceedings of the National Academy of Sciences.

[61]  Kai Johnsson,et al.  Localizable and highly sensitive calcium indicator based on a BODIPY fluorophore. , 2010, Analytical chemistry.

[62]  David T. Lynch,et al.  In vivo stable tumor-specific painting in various colors using dehalogenase-based protein-tag fluorescent ligands. , 2009, Bioconjugate chemistry.

[63]  K. Tan,et al.  Semisynthetic fluorescent sensor proteins based on self-labeling protein tags. , 2009, Journal of the American Chemical Society.

[64]  Christopher J Chang,et al.  Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. , 2010, Journal of the American Chemical Society.

[65]  J. Chin,et al.  Genetically encoded photocontrol of protein localization in mammalian cells. , 2010, Journal of the American Chemical Society.

[66]  A. Ting,et al.  An engineered aryl azide ligase for site-specific mapping of protein-protein interactions through photo-cross-linking. , 2008, Angewandte Chemie.

[67]  K. Johnsson,et al.  Photoactivatable and photoconvertible fluorescent probes for protein labeling. , 2010, ACS chemical biology.

[68]  A. Ting,et al.  Protein-protein interaction detection in vitro and in cells by proximity biotinylation. , 2008, Journal of the American Chemical Society.

[69]  A. Ting,et al.  Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase. , 2009, Journal of the American Chemical Society.

[70]  Teruyuki Nagamune,et al.  Expansion of the sortase-mediated labeling method for site-specific N-terminal labeling of cell surface proteins on living cells. , 2009, Chemical communications.

[71]  J. Ellenberg,et al.  Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum. , 2006, BioTechniques.

[72]  Daniel B. Fried,et al.  Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. , 2007, Nature chemical biology.

[73]  A. McMahon,et al.  Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation , 2009, Proceedings of the National Academy of Sciences.

[74]  Kai Johnsson,et al.  Chemical probes shed light on protein function. , 2007, Current opinion in structural biology.

[75]  J. Rao,et al.  A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins. , 2009, Angewandte Chemie.

[76]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[77]  Y. Hori,et al.  Covalent protein labeling based on noncatalytic beta-lactamase and a designed FRET substrate. , 2009, Journal of the American Chemical Society.

[78]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[79]  M. Satake,et al.  A versatile system for site-specific enzymatic biotinylation and regulated expression of proteins in cultured mammalian cells. , 2007, Protein expression and purification.

[80]  Michael Börsch,et al.  Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy. , 2009, Biochimica et biophysica acta.