A Fast Background Subtraction Method Robust to High Traffic and Rapid Illumination Changes

Though background subtraction has been widely studied for last decades, it is still a poorly solved problem especially when it meets real environments. In this paper, we first address some common problems for background subtraction that occur in real environments and then those problems are resolved by improving an existing GMM-based background modeling method. First, to achieve low computations, fixed point operations are used. Because background model usually does not require high precision of variables, we can reduce the computation time while maintaining its accuracy by adopting fixed point operations rather than floating point operations. Secondly, to avoid erroneous backgrounds that are induced by high pedestrian traffic, static levels of pixels are examined using shot-time statistics of pixel history. By using a lower learning rate for non-static pixels, we can preserve valid backgrounds even for busy scenes where foregrounds dominate. Finally, to adapt rapid illumination changes, we estimated the intensity change between two consecutive frames as a linear transform and compensated learned background models according to the estimated transform. By applying the fixed point operation to existing GMM-based method, it was able to reduce the computation time to about 30% of the original processing time. Also, experiments on a real video with high pedestrian traffic showed that our proposed method improves the previous background modeling methods by 20% in detection rate and 5~10% in false alarm rate.