Improved performance of the NaFePO4/Hardcarbon sodium-ion full cell

[1]  T. Kulova,et al.  Electrochemical Properties of LiFePO4 Cathodes: The Effect of Carbon Additives , 2022, Batteries.

[2]  L. Hultman,et al.  A step-by-step guide to perform x-ray photoelectron spectroscopy , 2022, Journal of Applied Physics.

[3]  Han Chen,et al.  Effect of Nb doping at Fe site on the cycling stability and rate capability of LiFePO4 for lithium-ion batteries , 2022, Vacuum.

[4]  Yunhui Huang The discovery of cathode materials for lithium‐ion batteries from the view of interdisciplinarity , 2022, Interdisciplinary Materials.

[5]  H. Manjunatha,et al.  Electrochemical Study of NaFePO4 Cathode Material in Aqueous Sodium-ion Electrolyte , 2022, Biointerface Research in Applied Chemistry.

[6]  S. Altın,et al.  Investigation of structural and electrochemical performance of Ru-substituted LiFePO4 cathode material: an improvement of the capacity and rate performance , 2022, Journal of Materials Science: Materials in Electronics.

[7]  F. Rahmawati,et al.  Preparation of a NaFePO4 Cathode Material via Electrochemical Sodiation of FePO4 Layers on Al Substrates , 2022, International Journal of Technology.

[8]  R. Stoyanova,et al.  Iron oxidation to amplify the Na and Li storage capacities of nano-sized maricite NaFePO4. , 2021, Dalton transactions.

[9]  S. Cottenier,et al.  Structural and electrochemical trends in mixed manganese oxides Nax(M0.44Mn0.56)O2 (M = Mn, Fe, Co, Ni) for sodium-ion battery cathode , 2021, Journal of Power Sources.

[10]  A. Alsmadi,et al.  Investigation on X-ray photoelectron spectroscopy, structural and low temperature magnetic properties of Ni-Ti co-substituted M-type strontium hexaferrites prepared by ball milling technique , 2021 .

[11]  S. Altın,et al.  Fabrication and electrochemical performance of Ho-substituted C/LiFePO4: Improved battery performance , 2021, Journal of Materials Science: Materials in Electronics.

[12]  Xiaobing Zhang,et al.  Optically Induced Field-Emission Source Based on Aligned Vertical Carbon Nanotube Arrays , 2021, Nanomaterials.

[13]  L. Hultman,et al.  The same chemical state of carbon gives rise to two peaks in X-ray photoelectron spectroscopy , 2021, Scientific Reports.

[14]  S. J. Rajoba,et al.  Solution combustion synthesis of NaFePO4 and its electrochemical performance , 2020 .

[15]  Arunima Rajan,et al.  Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia , 2020, Scientific Reports.

[16]  J. Tarascon Na-ion versus Li-ion Batteries: Complementarity Rather than Competitiveness , 2020, Joule.

[17]  R. Idczak,et al.  Investigation of Surface Segregation in Fe-Cr-Si Alloys by XPS , 2020, Metallurgical and Materials Transactions A.

[18]  Yong Yang,et al.  Anionic Redox Processes in Maricite- and Triphylite-NaFePO4 of Sodium-Ion Batteries , 2020, ACS omega.

[19]  L. Hultman,et al.  Compromising science by ignorant instrument calibration - need to revisit half a century of published XPS data. , 2020, Angewandte Chemie.

[20]  Alexandria R. C. Bredar,et al.  Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications , 2020, ACS Applied Energy Materials.

[21]  S. Kumagai,et al.  Electrochemical Impedance Spectroscopy on the Performance Degradation of LiFePO4/Graphite Lithium-Ion Battery Due to Charge-Discharge Cycling under Different C-Rates , 2019 .

[22]  Zhengguang Zou,et al.  Space-Confined Effect One-Pot Synthesis of γ-AlO(OH)/MgAl-LDH Heterostructures with Excellent Adsorption Performance , 2019, Nanoscale Research Letters.

[23]  P. Shen,et al.  Remarkable enhancement in the electrochemical activity of maricite NaFePO4 on high-surface-area carbon cloth for sodium-ion batteries , 2019, Carbon.

[24]  Isaac Lund,et al.  The Effect of Electrode-Electrolyte Interface on the Electrochemical Impedance Spectra for Positive Electrode in Li-Ion Battery , 2018, Journal of The Electrochemical Society.

[25]  L. Hultman,et al.  Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak , 2018, Applied Surface Science.

[26]  Natasha A. Chernova,et al.  Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-ion battery electrode and activated carbon , 2018, Journal of Solid State Electrochemistry.

[27]  P. Barpanda,et al.  Earth‐Abundant Alkali Iron Phosphates (AFePO4) as Efficient Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Solution , 2018 .

[28]  L. Hultman,et al.  C 1s Peak of Adventitious Carbon Aligns to the Vacuum Level: Dire Consequences for Material's Bonding Assignment by Photoelectron Spectroscopy , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  A. Michaelis,et al.  In-situ preparation and electrochemical characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries , 2017 .

[30]  D. Nihtianova,et al.  Effects of the Particle Size Distribution and of the Electrolyte Salt on the Intercalation Properties of P3-Na2/3Ni1/2Mn1/2O2 , 2017 .

[31]  T. Lestariningsih,et al.  Study on electrochemical performance of carbon-coated LiFePO4 as cathode material for lithium ion batteries , 2016 .

[32]  Zhiwei Wu,et al.  Synthesis of Na-doped ZnO hollow spheres with improved photocatalytic activity for hydrogen production. , 2016, Dalton transactions.

[33]  N. Kosova,et al.  Comparative structural analysis of LiMPO4 and Li2MPO4F (M = Mn, Fe, Co, Ni) according to XRD, IR, and NMR spectroscopy data , 2016, Journal of Structural Chemistry.

[34]  Kian Ping Loh,et al.  High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries , 2016 .

[35]  M. Nakayama,et al.  Density functional studies of olivine-type LiFePO4 and NaFePO4 as positive electrode materials for rechargeable lithium and sodium ion batteries , 2016 .

[36]  K. Park,et al.  High performance graphene embedded rubber composites , 2015 .

[37]  Xinping Ai,et al.  High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries. , 2015, ACS applied materials & interfaces.

[38]  D. Nihtianova,et al.  Sodium deficient nickel–manganese oxides as intercalation electrodes in lithium ion batteries , 2014 .

[39]  Jeng‐Kuei Chang,et al.  Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes , 2014 .

[40]  A. Yamada,et al.  Phase Diagram of Olivine NaxFePO4 (0 < x < 1) , 2013 .

[41]  Pierre Kubiak,et al.  Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4 , 2012 .

[42]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[43]  Mohd Faisal,et al.  Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst , 2012 .

[44]  B. Hwang,et al.  Micro-Electrode Linked Cyclic Voltammetry Study Reveals Ultra-Fast Discharge and High Ionic Transfer Behavior of LiFePO4 , 2012, International Journal of Electrochemical Science.

[45]  M. Makowski,et al.  Thermal behaviour of citric acid and isomeric aconitic acids , 2011 .

[46]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[47]  Yong Yang,et al.  Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries , 2008 .

[48]  T. Yamashita,et al.  Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials , 2008 .

[49]  A. Bhaumik,et al.  Syntheses of Mesoporous Hybrid Iron Oxophenyl Phosphate, Iron Oxophosphate, and Sulfonated Oxophenyl Phosphate , 2006 .

[50]  J. L. Dodd,et al.  Structural and Magnetic Properties of LiFePO4 and Lithium Extraction Effects , 2006 .

[51]  M. Seah,et al.  Post‐1989 calibration energies for X‐ray photoelectron spectrometers and the 1990 Josephson constant , 1989 .

[52]  D. E. Mann,et al.  Infrared Spectra and the Structures and Thermodynamics of Gaseous LiO, Li2O, and Li2O2 , 1963 .