Stochastic Cellular Automata: Correlations, Decidability and Simulations

This paper introduces a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in an unified and composable manner. This formalism allows for local probabilistic correlations, a feature which is not present in usual definitions. We show that this feature allows for strictly more behaviors for instance, number conserving stochastic cellular automata require these local probabilistic correlations. We also show that several problems which are deceptively simple in the usual definitions, become undecidable when we allow for local probabilistic correlations, even in dimension one. Armed with this formalism, we extend the notion of intrinsic simulation between deterministic cellular automata, to the non-deterministic and stochastic settings. Although the intrinsic simulation relation is shown to become undecidable in dimension two and higher, we provide explicit tools to prove or disprove the existence of such a simulation between any two given stochastic cellular automata. Those tools rely upon a characterization of equality of stochastic global maps, shown to be equivalent to the existence of a stochastic coupling between the random sources. We apply them to prove that there is no universal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal partial universality, as well as a universal non-deterministic cellular automaton.

[1]  Klaus Sutner,et al.  Model Checking One-Dimensional Cellular Automata , 2009, J. Cell. Autom..

[2]  Ivan Rapaport,et al.  Inducing an Order on Cellular Automata by a Grouping Operation , 1998, Discret. Appl. Math..

[3]  Marcus Pivato,et al.  The ergodic theory of cellular automata , 2012, Int. J. Gen. Syst..

[4]  Nicolas Ollinger,et al.  Bulking II: Classifications of cellular automata , 2010, Theor. Comput. Sci..

[5]  Nazim Fatès,et al.  Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2006, LATIN.

[6]  Michel Coornaert,et al.  Cellular Automata and Groups , 2010, Encyclopedia of Complexity and Systems Science.

[7]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[8]  Damien Regnault,et al.  Progresses in the Analysis of Stochastic 2D Cellular Automata: A Study of Asynchronous 2D Minority , 2007, MFCS.

[9]  Damien Regnault,et al.  Progresses in the analysis of stochastic 2D cellular automata: A study of asynchronous 2D minority , 2007, Theor. Comput. Sci..

[10]  Nicolas Ollinger,et al.  The Quest for Small Universal Cellular Automata , 2002, ICALP.

[11]  Petr Kůrka,et al.  Topological and symbolic dynamics , 2003 .

[12]  Jarkko Kari,et al.  The Most General Conservation Law for a Cellular Automaton , 2008, CSR.

[13]  Nicolas Ollinger Universalities in cellular automata a (short) survey , 2008, JAC.

[14]  Eric Thierry,et al.  Applying Causality Principles to the Axiomatization of Probabilistic Cellular Automata , 2011, CiE.

[15]  Hugo Gimbert,et al.  Probabilistic Automata on Finite Words: Decidable and Undecidable Problems , 2010, ICALP.

[16]  Olivier Finkel,et al.  On Decidability Properties of One-Dimensional Cellular Automata , 2009, J. Cell. Autom..

[17]  A. Toom,et al.  Chapter 4 CELLULAR AUTOMATA WITH ERRORS: PROBLEMS for STUDENTS of PROBABILITY , 2005 .

[18]  Henryk Fuks,et al.  Probabilistic cellular automata with conserved quantities , 2003, nlin/0305051.

[19]  Enrico Formenti,et al.  Number conserving cellular automata II: dynamics , 2003, Theor. Comput. Sci..

[20]  Jean Mairesse,et al.  Probabilistic Cellular Automata, Invariant Measures, and Perfect Sampling , 2013, Advances in Applied Probability.

[21]  Masayuki Kimura,et al.  Condition for Injectivity of Global Maps for Tessellation Automata , 1976, Inf. Control..

[22]  Didier Sornette,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[23]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[24]  Nicolas Ollinger,et al.  Four states are enough! , 2011, Theor. Comput. Sci..

[25]  Pablo Arrighi,et al.  Intrinsically universal n-dimensional quantum cellular automata , 2009, J. Comput. Syst. Sci..

[26]  Nazim Fatès Stochastic Cellular Automata Solve the Density Classification Problem with an Arbitrary Precision , 2011, STACS.

[27]  Ana Busic,et al.  Probabilistic Cellular Automata, Invariant Measures, and Perfect Sampling , 2010, Advances in Applied Probability.

[28]  Dietrich Kuske,et al.  Theories of Automatic Structures and Their Complexity , 2009, CAI.

[29]  Nicolas Ollinger Automates cellulaires : structures , 2002 .

[30]  Klaus Sutner,et al.  Cellular Automata, Decidability and Phasespace , 2010, Fundam. Informaticae.

[31]  Péter Gács Reliable Cellular Automata with Self-Organization , 1997, FOCS 1997.

[32]  Guillaume Theyssier Automates cellulaires : un modèle de complexités , 2005 .

[33]  Enrico Formenti,et al.  Number-conserving cellular automata I: decidability , 2003, Theor. Comput. Sci..

[34]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[35]  Nicolas Ollinger,et al.  Bulking I: An abstract theory of bulking , 2011, Theor. Comput. Sci..