Avoidance and softening of disruptions by control of plasma-surface interaction

Abstract Reduction of the plasma-surface interaction at the energy quench is essential for avoiding or softening the subsequent plasma-current quench. This reduction suppresses vertical instability and generation of runaway electrons during the plasma-current quench. Resultant slow plasma-current quench improves controllability of plasma movement and reduces halo currents. This amelioration of the major disruption will drastically relax the design requirements of tokamak fusion reactors.

[1]  P. Haynes,et al.  Field error instabilities in JET , 1994 .

[2]  A. Bondeson,et al.  MHD modelling of density limit disruptions in tokamaks , 1991 .

[3]  K. H. Finken,et al.  Energy flux to the textor limiters during disruptions , 1992 .

[4]  G. Sadler,et al.  Photoneutron production accompanying plasma disruptions in JET , 1988 .

[5]  D. Ehst,et al.  Dynamic modeling of plasma-vapor interactions during plasma disruptions* , 1992 .

[6]  D. Campbell Confinement and stability in JET: recent results , 1990 .

[7]  G. Schmidt,et al.  Dissipation of magnetic energy during disruptive current termination , 1983 .

[8]  O. Gruber,et al.  Vertical displacement events and halo currents , 1993 .

[9]  D. Loesser,et al.  The TFTR Bumper Limiter Performance Enhancements , 1991 .

[10]  A. J. Russo,et al.  A model for disruption generated runaway electrons , 1993 .

[11]  R. Yoshino,et al.  The softening of current quenches in JT-60U , 1993 .

[12]  Dan M. Goebel,et al.  Observation of infrared synchrotron radiation from tokamak runaway electrons in TEXTOR , 1990 .

[13]  D. N. Hill,et al.  Measurements of non-axisymmetric effects in the DIII-D divertor , 1995 .

[14]  J. T. Scoville,et al.  Nonlinear instability to low m,n=1 error fields in DIII-D as a function of plasma fluid rotation and beta , 1992 .

[15]  G. Waidmann,et al.  Density limits and evolution of disruptions in ohmic TEXTOR plasmas , 1992 .

[16]  C. Ludescher,et al.  Statistical analysis of disruptions in ASDEX , 1993 .

[17]  K. F. Mast,et al.  Disruptions in JET , 1989 .

[18]  H. Madarame,et al.  Numerical analysis of the plasma-material interaction during the thermal quench phase of tokamak disruptions , 1992 .

[19]  S. Jardin,et al.  Dynamics and energy flow in a disrupting tokamak plasma , 1991 .

[20]  David Ward,et al.  Negative voltage spike in tokamak disruptions , 1990 .

[21]  K. Dietz Effect of beryllium on plasma performance in JET , 1990 .

[22]  N. Asakura,et al.  Radiative divertor in JT-60U , 1995 .

[23]  David Ward,et al.  Impurity influx model of fast tokamak disruptions , 1992 .

[24]  A. Hassanein,et al.  Comprehensive model for disruption erosion in a reactor environment , 1995 .

[25]  A. J. Knight,et al.  Density limits and disruptions in the TCA tokamak , 1992 .

[26]  R. Yoshino,et al.  Investigation of plasma facing components in JT-60U operation , 1995 .

[27]  J. T. Scoville,et al.  Critical error fields for locked mode instability in tokamaks , 1992 .

[28]  G. Mank,et al.  Experimental investigation of runaway electron generation in TEXTOR , 1993 .

[29]  N. J. Lopes Cardozo,et al.  Observations of infrared radiation during disruptions in TEXTOR: heat pulses and runaway electrons , 1995 .