TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD

We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey-II Supernova Survey. The redshifts of these SNe—0.027 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.

[1]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[2]  Brian Paul Schmidt,et al.  The atmospheres of type II supernovae and the expanding photosphere method , 1996 .

[3]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[4]  U. Munari,et al.  The Asiago Database on Photometric Systems (ADPS). I. Census parameters for 167 photometric systems , 2000 .

[5]  Zeljko Ivezic,et al.  Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry , 2007, astro-ph/0703157.

[6]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[7]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[8]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[9]  Philip A. Pinto,et al.  Type II Supernovae as Standardized Candles , 2002 .

[10]  S. Smartt,et al.  The progenitor of SN 2005cs in the Whirlpool Galaxy , 2005, astro-ph/0507502.

[11]  L. Antonelli,et al.  The multicolored landscape of compact objects and their explosive Origins : Cefalù 2006 : Cefalù, Sicily, 11-18 and 19-24 June 2006 , 2007 .

[12]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[13]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[14]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[15]  P. Nugent,et al.  K‐Corrections and Extinction Corrections for Type Ia Supernovae , 2002, astro-ph/0205351.

[16]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[17]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[18]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[19]  Adam A. Miller,et al.  IMPROVED STANDARDIZATION OF TYPE II-P SUPERNOVAE: APPLICATION TO AN EXPANDED SAMPLE , 2008, 0810.4923.

[20]  R. Ellis,et al.  Toward a Cosmological Hubble Diagram for Type II-P Supernovae , 2005, astro-ph/0603535.

[21]  Robert P. Kirshner,et al.  Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp , 2007, 0711.1815.

[22]  Quantitative spectroscopic analysis of and distance to SN1999em , 2005, astro-ph/0510526.

[23]  Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova , 2004, Science.

[24]  Robert M. Quimby,et al.  SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova , 2007, 0705.3478.

[25]  J. Neill,et al.  Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.

[26]  S. Smartt,et al.  The Disappearance of the Progenitors of Supernovae 1993J and 2003gd , 2009, Science.

[27]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[28]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[29]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[30]  M. Hamuy Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.

[31]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[32]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[33]  On the Progenitor of the Type II‐Plateau Supernova 2003gd in M74* , 2003, astro-ph/0307226.

[34]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[35]  Tx,et al.  SN 2004A: Another Type II-P Supernova with a Red Supergiant Progenitor , 2006, astro-ph/0603670.

[36]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[37]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[38]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[39]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[40]  M. Livio,et al.  Identification of the Red Supergiant Progenitor of Supernova 2005cs: Do the Progenitors of Type II-P Supernovae Have Low Mass? , 2005, astro-ph/0507394.

[41]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[42]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[43]  R. Bacon,et al.  Overview of the Nearby Supernova Factory , 2002, SPIE Astronomical Telescopes + Instrumentation.

[44]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[45]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[46]  Alexander S. Szalay,et al.  Sloan digital sky survey: Early data release , 2002 .

[47]  Low‐luminosity Type II supernovae: spectroscopic and photometric evolution , 2003, astro-ph/0309264.

[48]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[49]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[50]  R. Foley,et al.  On the Progenitors of Two Type IIP Supernovae in the Virgo Cluster 1 , 2009 .

[51]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[52]  Hubble Space Telescope imaging of the progenitor sites of six nearby core‐collapse supernovae , 2005, astro-ph/0501323.

[53]  A. Goobar,et al.  Feasibility of measuring the cosmological constant {Lambda} and mass density {Omega} using Type Ia supernovae , 1995, astro-ph/9505022.

[54]  S. Smartt,et al.  VLT Detection of a Red Supergiant Progenitor of the Type II-P Supernova 2008bk , 2008, 0809.0206.

[55]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[56]  Robert P. Kirshner,et al.  Distances to extragalactic supernovae , 1974 .

[57]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.