The special class of second integrals of the KdV equation

Abstract The special class of second integrals, distinguished for its infinite dimension, emerges naturally when generalizing the second integrals of ordinary differential equations to partial differential equations. The conserved quantities of the KdV equation are a special class of second integrals. We proved its uniqueness under the assumption on the cofactor operator. The special class is so peculiar that to find it is almost an algorithm. Thus we managed to generalize the special class of the conserved quantities of the KdV equation to a new 2-parameter special class. Among the special classes, the special class of nonlocal second integrals plays an extra role. As an example, the special class that generates the multi-soliton solutions of the KdV equation is presented.

[1]  Constraints for Evolution Equations with Some Special Forms of Lax Pairs and Distinguishing Lax Pairs by Available Constraints , 2010, 1008.1375.

[2]  A. Goriely Integrability and Nonintegrability of Dynamical Systems , 2001 .

[3]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[4]  Yi Cheng Constraints of the Kadomtsev-Petviashvili hierarchy , 1992 .

[5]  Jacques-Arthur Weil Constantes et polynomes de darboux en algebre differentielle : application aux systemes differentiels lineaires , 1995 .

[6]  Peter D. Lax,et al.  Almost Periodic Solutions of the KdV Equation , 1976 .

[7]  D. Korteweg,et al.  On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .

[8]  Helge Holden,et al.  Soliton Equations and Their Algebro-Geometric Solutions: The AKNS Hierarchy , 2003 .

[9]  Xiang Zhang,et al.  Rational first integrals in the Darboux theory of integrability in C^n , 2010 .

[10]  Guillaume Chèze Darboux theory of integrability in the sparse case , 2012, 1210.7780.

[11]  Y. Bagderina Three series of invariant manifolds of the Sawada-Kotera equation , 2009 .

[12]  Sen-Yue Lou,et al.  Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[14]  V. Sokolov,et al.  On construction of recursion operators from Lax representation , 1999, solv-int/9909003.

[15]  J. Jouanolou,et al.  Equations de Pfaff algébriques , 1979 .

[16]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[17]  Liu Nian-hua,et al.  Constraints and Soliton Solutions for KdV Hierarchy and AKNS Hierarchy , 2011 .

[18]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[19]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[20]  P. Painlevé Mémoire sur les équations différentielles du premier ordre , 1891 .

[21]  F. Estabrook,et al.  Prolongation structures of nonlinear evolution equations , 1975 .

[22]  M. Poincaré,et al.  Sur Ľintégration algébrique des équations différentielles du premier ordre et du premier degré , 1891 .

[23]  C Cao,et al.  NONLINEARIZATION OF THE LAX SYSTEM FOR AKNS HIERARCHY , 1990 .

[24]  W. Oevel,et al.  Constrained KP hierarchy and bi-Hamiltonian structures , 1993 .

[25]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[26]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[27]  Xiaorui Hu,et al.  Nonlocal symmetries related to Bäcklund transformation and their applications , 2012, 1201.3409.