Asymptotic Variance and Convergence Rates of Nearly-Periodic Markov Chain Monte Carlo Algorithms

This article considers nearly-periodic Markov chains that may have excellent functional estimation properties but poor distributional convergence rate. It shows how simple modifications of the chain (involving using a random number of iterations) can greatly improve the distributional convergence of the chain. Various theoretical results about convergence rates of the modified chains are proven. A number of examples, including a transdimensional Markov chain Monte Carlo example, a card-shuffling example, and several antithetic Metropolis algorithms, are considered.

[1]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[2]  Hani Doss Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .

[3]  B. Efron,et al.  Data Analysis Using Stein's Estimator and its Generalizations , 1975 .

[4]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[5]  Galin L. Jones,et al.  Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .

[6]  Mary Kathryn Cowles MCMC Sampler Convergence Rates for Hierarchical Normal Linear Models: A Simulation Approach , 2002, Stat. Comput..

[7]  Mira Antonietta Ordering and improving Monte Carlo Markov chains performance , 2002 .

[8]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[9]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[10]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[11]  J. Rosenthal,et al.  Geometric Ergodicity and Hybrid Markov Chains , 1997 .

[12]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[13]  R. Tweedie,et al.  Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains , 2001, Journal of Applied Probability.

[14]  C. Morris Parametric Empirical Bayes Confidence Intervals , 1983 .

[15]  D. Griffeath A maximal coupling for Markov chains , 1975 .

[16]  B. Carlin,et al.  On the Convergence of Successive Substitution Sampling , 1992 .

[17]  Xiao-Li Meng,et al.  Antithetic Coupling for Perfect Sampling , 2000 .

[18]  Mary Kathryn Cowles,et al.  A simulation approach to convergence rates for Markov chain Monte Carlo algorithms , 1998, Stat. Comput..

[19]  S. Orey Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities , 1971 .

[20]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[21]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[22]  J. Rosenthal RATES OF CONVERGENCE FOR GIBBS SAMPLING FOR VARIANCE COMPONENT MODELS , 1995 .

[23]  P. Green,et al.  Metropolis Methods, Gaussian Proposals and Antithetic Variables , 1992 .

[24]  J. Pitman On coupling of Markov chains , 1976 .

[25]  Jeffrey S. Rosenthal,et al.  Analysis of the Gibbs Sampler for a Model Related to James-stein Estimators , 2007 .

[26]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[27]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[28]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[29]  P. Diaconis Group representations in probability and statistics , 1988 .

[30]  R. Tweedie,et al.  Bounds on regeneration times and convergence rates for Markov chains fn1 fn1 Work supported in part , 1999 .

[31]  J. Rosenthal,et al.  Shift-coupling and convergence rates of ergodic averages , 1997 .

[32]  C. Geyer,et al.  Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .

[33]  Gareth O. Roberts,et al.  SMALL AND PSEUDO-SMALL SETS FOR MARKOV CHAINS , 2001 .

[34]  Antonietta Mira,et al.  Ordering Monte Carlo Markov Chains , 1999 .