Asymptotic Variance and Convergence Rates of Nearly-Periodic Markov Chain Monte Carlo Algorithms
暂无分享,去创建一个
[1] P. Diaconis,et al. Generating a random permutation with random transpositions , 1981 .
[2] Hani Doss. Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .
[3] B. Efron,et al. Data Analysis Using Stein's Estimator and its Generalizations , 1975 .
[4] S. Meyn,et al. Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .
[5] Galin L. Jones,et al. Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .
[6] Mary Kathryn Cowles. MCMC Sampler Convergence Rates for Hierarchical Normal Linear Models: A Simulation Approach , 2002, Stat. Comput..
[7] Mira Antonietta. Ordering and improving Monte Carlo Markov chains performance , 2002 .
[8] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[9] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[10] E. Nummelin. General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .
[11] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[12] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[13] R. Tweedie,et al. Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains , 2001, Journal of Applied Probability.
[14] C. Morris. Parametric Empirical Bayes Confidence Intervals , 1983 .
[15] D. Griffeath. A maximal coupling for Markov chains , 1975 .
[16] B. Carlin,et al. On the Convergence of Successive Substitution Sampling , 1992 .
[17] Xiao-Li Meng,et al. Antithetic Coupling for Perfect Sampling , 2000 .
[18] Mary Kathryn Cowles,et al. A simulation approach to convergence rates for Markov chain Monte Carlo algorithms , 1998, Stat. Comput..
[19] S. Orey. Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities , 1971 .
[20] S. Varadhan,et al. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .
[21] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[22] J. Rosenthal. RATES OF CONVERGENCE FOR GIBBS SAMPLING FOR VARIANCE COMPONENT MODELS , 1995 .
[23] P. Green,et al. Metropolis Methods, Gaussian Proposals and Antithetic Variables , 1992 .
[24] J. Pitman. On coupling of Markov chains , 1976 .
[25] Jeffrey S. Rosenthal,et al. Analysis of the Gibbs Sampler for a Model Related to James-stein Estimators , 2007 .
[26] J. Besag,et al. Spatial Statistics and Bayesian Computation , 1993 .
[27] G. Roberts,et al. Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .
[28] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[29] P. Diaconis. Group representations in probability and statistics , 1988 .
[30] R. Tweedie,et al. Bounds on regeneration times and convergence rates for Markov chains fn1 fn1 Work supported in part , 1999 .
[31] J. Rosenthal,et al. Shift-coupling and convergence rates of ergodic averages , 1997 .
[32] C. Geyer,et al. Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .
[33] Gareth O. Roberts,et al. SMALL AND PSEUDO-SMALL SETS FOR MARKOV CHAINS , 2001 .
[34] Antonietta Mira,et al. Ordering Monte Carlo Markov Chains , 1999 .