Bridging substrate intake kinetics and bacterial growth phenotypes with flux balance analysis incorporating proteome allocation

[1]  J. Nielsen,et al.  Energy metabolism controls phenotypes by protein efficiency and allocation , 2019, Proceedings of the National Academy of Sciences.

[2]  A. Yang,et al.  Quantification of proteomic and metabolic burdens predicts growth retardation and overflow metabolism in recombinant Escherichia coli , 2019, Biotechnology and bioengineering.

[3]  Aidong Yang,et al.  Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential proteomic efficiencies of energy pathways , 2019, BMC Systems Biology.

[4]  Athanasios Mantalaris,et al.  Optimal bioprocess design through a gene regulatory network - Growth kinetic hybrid model: Towards replacing Monod kinetics. , 2018, Metabolic engineering.

[5]  B. Palsson,et al.  Metabolic Models of Protein Allocation Call for the Kinetome. , 2017, Cell systems.

[6]  Z. Oltvai,et al.  Macromolecular crowding explains overflow metabolism in cells , 2016, Scientific Reports.

[7]  Matteo Mori,et al.  Constrained Allocation Flux Balance Analysis , 2016, PLoS Comput. Biol..

[8]  T. Hwa,et al.  Overflow metabolism in E. coli results from efficient proteome allocation , 2015, Nature.

[9]  K. Valgepea,et al.  Proteome reallocation in Escherichia coli with increasing specific growth rate. , 2015, Molecular bioSystems.

[10]  David W. Erickson,et al.  Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria , 2015, Molecular systems biology.

[11]  Timothy J. Hanly,et al.  Dynamic flux balance analysis for synthetic microbial communities. , 2014, IET systems biology.

[12]  Timothy J. Hanly,et al.  Dynamic model‐based analysis of furfural and HMF detoxification by pure and mixed batch cultures of S. cerevisiae and S. stipitis , 2014, Biotechnology and bioengineering.

[13]  Edward J. O'Brien,et al.  Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction , 2013, Molecular systems biology.

[14]  T. Hwa,et al.  Coordination of bacterial proteome with metabolism by cyclic AMP signalling , 2013, Nature.

[15]  Timothy J. Hanly,et al.  Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures , 2013, Biotechnology for Biofuels.

[16]  Yuval Hart,et al.  The last generation of bacterial growth in limiting nutrient , 2013, BMC Systems Biology.

[17]  A. Rehman,et al.  Characteristics of mixed microbial culture at different sludge ages: effect on variable kinetics for substrate utilization. , 2012, Bioresource technology.

[18]  Ronan M. T. Fleming,et al.  Multiscale Modeling of Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of Codon Usage , 2012, PloS one.

[19]  K. Bettenbrock,et al.  Glucose Transport in Escherichia coli Mutant Strains with Defects in Sugar Transport Systems , 2012, Journal of bacteriology.

[20]  Jeffrey D. Orth,et al.  In silico method for modelling metabolism and gene product expression at genome scale , 2012, Nature Communications.

[21]  T. Egli,et al.  In glucose-limited continuous culture the minimum substrate concentration for growth, smin, is crucial in the competition between the enterobacterium Escherichia coli and Chelatobacter heintzii, an environmentally abundant bacterium , 2011, The ISME Journal.

[22]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[23]  V. Fromion,et al.  Bacterial growth rate reflects a bottleneck in resource allocation. , 2011, Biochimica et biophysica acta.

[24]  Radhakrishnan Mahadevan,et al.  Economics of membrane occupancy and respiro-fermentation , 2011, Molecular systems biology.

[25]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[26]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[27]  Ronan M. T. Fleming,et al.  Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. , 2010, EcoSal Plus.

[28]  G. Insel,et al.  Validity of Monod kinetics at different sludge ages--peptone biodegradation under aerobic conditions. , 2009, Bioresource technology.

[29]  B. Teusink,et al.  Shifts in growth strategies reflect tradeoffs in cellular economics , 2009, Molecular systems biology.

[30]  J. Snoep,et al.  Control of specific growth rate in Saccharomyces cerevisiae. , 2009, Microbiology.

[31]  Bernhard O. Palsson,et al.  Connecting Extracellular Metabolomic Measurements to Intracellular Flux States in Yeast , 2022 .

[32]  Ronan M. T. Fleming,et al.  Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization , 2009, PLoS Comput. Biol..

[33]  M. A. Henson,et al.  Genome‐scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed‐batch culture , 2007, Biotechnology and bioengineering.

[34]  M. A. de Menezes,et al.  Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity , 2007, Proceedings of the National Academy of Sciences.

[35]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[36]  Yu Liu,et al.  Overview of some theoretical approaches for derivation of the Monod equation , 2007, Applied Microbiology and Biotechnology.

[37]  Yu Liu A simple thermodynamic approach for derivation of a general Monod equation for microbial growth , 2006 .

[38]  Thomas Egli,et al.  Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. , 2006, Microbiology.

[39]  A. Narang,et al.  Identification of the growth-limiting step in continuous cultures from initial rates measured in response to substrate-excess conditions , 2005, q-bio/0509013.

[40]  T. Egli,et al.  The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics. , 2002, Microbiology.

[41]  T. Egli,et al.  Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics , 1998, Microbiology and Molecular Biology Reviews.

[42]  H. Holms,et al.  Flux analysis and control of the central metabolic pathways in Escherichia coli. , 1996, FEMS microbiology reviews.

[43]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[44]  B. Palsson,et al.  Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates , 1993, Applied and environmental microbiology.

[45]  S. Roseman,et al.  Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. , 1982, The Journal of biological chemistry.

[46]  A. L. Koch,et al.  How close to the theoretical diffusion limit do bacterial uptake systems function? , 1982, Archives of Microbiology.

[47]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  J. Monod The Growth of Bacterial Cultures , 1949 .

[49]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010, Nature Protocols.

[50]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[51]  G. Insel,et al.  Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions , 2007, Biotechnology and bioengineering.

[52]  Michael A Henson,et al.  Optimization of Fed‐Batch Saccharomyces cerevisiae Fermentation Using Dynamic Flux Balance Models , 2006, Biotechnology progress.

[53]  M. A. Henson,et al.  Optimization of Fed-BatchSaccharomyces cerevisiaeFermentation Using Dynamic Flux Balance Models , 2006 .

[54]  H. Poggi‐Varaldo,et al.  Microbial Cell Factories BioMed Central Review , 2007 .