Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications.

Environmental and energy problems have drawn much attention owing to rapid population growth and accelerated economic development. For instance, photocatalysis, "a green technology", plays an important role in solar-energy conversion owing to its potential to solve energy and environmental problems. Recently, many efforts have been devoted to improving visible-light photocatalytic activity by using titanium dioxide as a photocatalyst as a result of its wide range of applications in the energy and environment fields. However, fast charge recombination and an absorption edge in the UV range limit the photocatalytic efficiency of TiO2 under visible-light irradiation. Many investigations have been undertaken to overcome the limitations of TiO2 and, therefore, to enhance its photocatalytic activity under visible light. The present literature review focuses on different strategies used to promote the separation efficiency of electron-hole pairs and to shift the absorption edge of TiO2 to the visible region. Current synthesis techniques used to elaborate several nanostructures of TiO2 -based materials, recent progress in enhancing visible photocatalytic activity, and different photocatalysis applications will be discussed. On the basis of the studies reported in the literature, we believe that this review will help in the development of new strategies to improve the visible-light photocatalytic performance of TiO2 -based materials further.

[1]  Guihua Yang,et al.  Enhanced photocatalytic CO2 reduction via the synergistic effect between Ag and activated carbon in TiO2/AC-Ag ternary composite , 2018, Chemical Engineering Journal.

[2]  M. Nocuń,et al.  Spectroscopy studies of TiO2/carbon nanotubes nanocomposite layers synthesized by the sol-gel method , 2018, Journal of Molecular Structure.

[3]  J. Kar,et al.  Electrical characteristics of dip coated TiO2 thin films with various withdrawal speeds for resistive switching applications , 2018, Applied Surface Science.

[4]  C. Grimes,et al.  Solar spectrum photocatalytic conversion of CO2 to CH4 utilizing TiO2 nanotube arrays embedded with graphene quantum dots , 2018, Journal of CO2 Utilization.

[5]  M. Rigamonti,et al.  Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark , 2018, Applied Catalysis B: Environmental.

[6]  T. Breugelmans,et al.  Cutting the Gordian Knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5 nm , 2018, Applied Catalysis B: Environmental.

[7]  S. Robledo,et al.  Solution-combustion synthesis of doped TiO2 compounds and its potential antileishmanial activity mediated by photodynamic therapy. , 2018, Journal of photochemistry and photobiology. B, Biology.

[8]  Sonja A. Francis,et al.  The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO2 Reduction Conditions: An Experimental and Theoretical Study , 2018, ACS Energy Letters.

[9]  G. Garnweitner,et al.  Chemical Cross-Linking of Anatase Nanoparticle Thin Films for Enhanced Mechanical Properties. , 2018, Langmuir.

[10]  Haijiao Zhang,et al.  One-Step Hydrothermal Synthesis of Small TiO₂ Porous Nanoparticles for Efficient Degradation of Organic Dyes. , 2018, Journal of Nanoscience and Nanotechnology.

[11]  V. Keller,et al.  Au/TiO2–gC3N4 Nanocomposites for Enhanced Photocatalytic H2 Production from Water under Visible Light Irradiation with Very Low Quantities of Sacrificial Agents , 2018 .

[12]  G. Armatas,et al.  Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO 2 composite photocatalysts under solar radiation in urban wastewaters , 2018 .

[13]  Y. Rakovich Organic–Inorganic Hybrid Nanosystems for Photodynamic Therapy , 2018 .

[14]  C. Colbeau-Justin,et al.  Effect of Modification of TiO2 with Metal Nanoparticles on Its Photocatalytic Properties Studied by Time‐Resolved Microwave Conductivity , 2018 .

[15]  Junying Zhang,et al.  Photocatalytic reduction of CO2 over facet engineered TiO2 nanocrystals supported by carbon nanofibers under simulated sunlight irradiation , 2018 .

[16]  S. Patil,et al.  Multi-applicative tetragonal TiO 2 /SnO 2 nanocomposites for photocatalysis and gas sensing , 2018 .

[17]  B. Cheng,et al.  Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO 2 nanotube arrays for photocatalytic CO 2 reduction , 2018 .

[18]  H. Atwater,et al.  Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. , 2018, Nano letters.

[19]  Shaobin Wang,et al.  Worm-like FeS2/TiO2 Nanotubes for Photoelectrocatalytic Reduction of CO2 to Methanol under Visible Light , 2018 .

[20]  Changzhong Jiang,et al.  Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation , 2018, Nanotechnology.

[21]  K. Rajeshwar,et al.  One-Step Electrodeposition of Nanocrystalline TiO2 Films with Enhanced Photoelectrochemical Performance and Charge Storage , 2018 .

[22]  E. Bailón-García,et al.  Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. , 2018, Journal of colloid and interface science.

[23]  M. Jaroniec,et al.  Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities , 2018, Advanced materials.

[24]  Hao Xu,et al.  Pore size-tunable titanosilicates post-synthesized from germanosilicate by structural reorganization and H 2 TiF 6 -assisted isomorphous substitution , 2018 .

[25]  Yuyan Liu,et al.  Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO2 Nanotube Arrays. , 2018, ACS nano.

[26]  R. Viter,et al.  High photodegradation and antibacterial activity of BN–Ag/TiO2 composite nanofibers under visible light , 2018 .

[27]  S. Jadkar,et al.  Solvothermal synthesis of tin sulfide (SnS) nanorods and investigation of its field emission properties , 2018 .

[28]  A. Nemati,et al.  Hydrothermal synthesis of TiO2 nanorod for using as an electron transport material in perovskite solar cells , 2018 .

[29]  Da Huo,et al.  Multifunctional Bi2WO6 Nanoparticles for CT-Guided Photothermal and Oxygen-free Photodynamic Therapy. , 2018, ACS applied materials & interfaces.

[30]  C. Lenardi,et al.  Sol-gel TiO2 colloidal suspensions and nanostructured thin films: structural and biological assessments , 2018, Nanotechnology.

[31]  F. Davar,et al.  Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions , 2018 .

[32]  S. Roualdès,et al.  Optimization of N-doped TiO 2 multifunctional thin layers by low frequency PECVD process , 2017 .

[33]  Aiping Zhang,et al.  Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration. , 2017, Journal of photochemistry and photobiology. B, Biology.

[34]  Zhanhu Guo,et al.  Self-assembled nano-leaf/vein bionic structure of TiO2/MoS2 composites for photoelectric sensors. , 2017, Nanoscale.

[35]  R. Viter,et al.  Optical and structural properties of Al 2 O 3 doped ZnO nanotubes prepared by ALD and their photocatalytic application , 2017, Surface and Coatings Technology.

[36]  L. Ge,et al.  In situ synthesis of tetrahedron-shaped hollow porous Ag@AgBr plasmonic photocatalysts with highly efficient visible-light performance by a template-assisted method , 2017 .

[37]  R. Viter,et al.  Mesoporous ZnFe2O4@TiO2 Nanofibers Prepared by Electrospinning Coupled to PECVD as Highly Performing Photocatalytic Materials , 2017 .

[38]  Ke-Qin Zhang,et al.  Uniform carbon dots@TiO2 nanotube arrays with full spectrum wavelength light activation for efficient dye degradation and overall water splitting. , 2017, Nanoscale.

[39]  D. Lončarević,et al.  Photo-induced properties of photocatalysts: A study on the modified structural, optical and textural properties of TiO2–ZnAl layered double hydroxide based materials , 2017 .

[40]  Kai Xu,et al.  Soft template-assisted method for synthesis of nitrogen and sulfur co-doped three-dimensional reduced graphene oxide as an efficient metal free catalyst for oxygen reduction reaction , 2017 .

[41]  Y. Lai,et al.  3D Au-decorated BiMoO6 nanosheet/TiO2 nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity , 2017 .

[42]  S. Apte,et al.  Green sol–gel route for selective growth of 1D rutile N–TiO2: a highly active photocatalyst for H2 generation and environmental remediation under natural sunlight , 2017 .

[43]  R. Zbořil,et al.  Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication , 2017 .

[44]  Sebastien Balme,et al.  Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition. , 2017, ACS applied materials & interfaces.

[45]  M. El-Nahass,et al.  Influence of Film Thickness and Annealing Temperature on Optical Properties of Nanostructured-TiO2 Thin Films Prepared by Sol–Gel Spin Coating Technique , 2017 .

[46]  Chengchun Tang,et al.  Solvothermal preparation of micro/nanostructured TiO2 with enhanced lithium storage capability , 2017 .

[47]  Zhiqun Lin,et al.  A review of TiO2 nanostructured catalysts for sustainable H2 generation , 2017 .

[48]  Changzheng Wang,et al.  Metal/TiO2 hierarchical nanocomposite arrays for the remarkable enhancement of photocatalytic activity , 2017 .

[49]  A. Turolla,et al.  Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO2 Photocatalysis. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[50]  N. S. Amin,et al.  Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/TiO2 NWs core/shell hetero-junction under UV and visible light , 2017 .

[51]  G. Esposito,et al.  A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process , 2017 .

[52]  Yi He,et al.  Enhancing the photocatalytic and antibacterial property of polyvinylidene fluoride membrane by blending Ag–TiO2 nanocomposites , 2017, Journal of Materials Science: Materials in Electronics.

[53]  J. Park,et al.  Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications , 2017, Nanotechnology.

[54]  Jiaguo Yu,et al.  Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review , 2017 .

[55]  I. Parkin,et al.  On the apparent visible-light and enhanced UV-light photocatalytic activity of nitrogen-doped TiO2 thin films , 2017 .

[56]  R. Habchi,et al.  Enhanced Visible-Light Photocatalytic Performance of Electrospun rGO/TiO2 Composite Nanofibers , 2017 .

[57]  B. Bhanvase,et al.  A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment , 2017 .

[58]  Zhen Jin,et al.  Synthesis of Ag-decorated porous TiO 2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity , 2016 .

[59]  D. Geetha,et al.  Synthesis of Cu Loaded TiO2 Nanoparticles for the Improved Photocatalytic Degradation of Rhodamine B , 2016 .

[60]  Lisha Yang,et al.  Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity , 2016 .

[61]  R. Viter,et al.  Synthesis of novel ZnO/ZnAl2O4 multi co-centric nanotubes and their long-term stability in photocatalytic application , 2016 .

[62]  A. Julbe,et al.  Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution , 2016 .

[63]  I. Iatsunskyi,et al.  Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates , 2016 .

[64]  Ke-Qin Zhang,et al.  One‐dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting , 2016, Advanced science.

[65]  E. Imam,et al.  TiO2 Solar Photocatalytic Reactor Systems: Selection of Reactor Design for Scale-up and Commercialization—Analytical Review , 2016 .

[66]  M. Raza,et al.  Visible light photo catalytic inactivation of bacteria and photo degradation of methylene blue with Ag/TiO2 nanocomposite prepared by a novel method. , 2016, Journal of photochemistry and photobiology. B, Biology.

[67]  Yaqing Zhang,et al.  Immobilisation of TiO2 films on activated carbon fibres by a hydrothermal method for photocatalytic degradation of toluene , 2016 .

[68]  H. Le,et al.  Insights into degradation of metallic lithium electrodes protected by a bilayer solid electrolyte based on aluminium substituted lithium lanthanum titanate in lithium-air batteries , 2016 .

[69]  Hua Tang,et al.  Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity , 2016 .

[70]  Zhiqun Lin,et al.  Nonepitaxial growth of uniform and precisely size-tunable core/shell nanoparticles and their enhanced plasmon-driven photocatalysis , 2016 .

[71]  R. Wu,et al.  Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light , 2016 .

[72]  J. Crittenden,et al.  Highly enhanced photocatalytic reduction of Cr(VI) on AgI/TiO2 under visible light irradiation: Influence of calcination temperature. , 2016, Journal of hazardous materials.

[73]  Y. Chimupala,et al.  Universal synthesis method for mixed phase TiO2(B)/anatase TiO2 thin films on substrates via a modified low pressure chemical vapour deposition (LPCVD) route , 2016 .

[74]  S. Sabar,et al.  Photocatalytic removal of Reactive Red 4 dye by immobilised layer-by-layer TiO2/cross-linked chitosan derivatives system , 2016 .

[75]  T. Ishihara,et al.  Effect of Porphyrin Molecular Structure on Water Splitting Activity of a KTaO3 Photocatalyst , 2016 .

[76]  Hongying Dong,et al.  Synthesis of Multi-Walled Carbon Nanotubes/TiO2 Composite and Its Photocatalytic Activity. , 2016, Journal of Nanoscience and Nanotechnology.

[77]  Ke-Qin Zhang,et al.  In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. , 2016, Nanoscale.

[78]  A. Ganguli,et al.  Comparative Study of TiO2/CuS Core/Shell and Composite Nanostructures for Efficient Visible Light Photocatalysis , 2016 .

[79]  Y. Bando,et al.  h-BN nanosheets as simple and effective additives to largely enhance the activity of Au/TiO2 plasmonic photocatalysts. , 2016, Physical chemistry chemical physics : PCCP.

[80]  Jianglei Hu,et al.  Ag-AgBr nanoparticles loaded on TiO2 nanofibers as an efficient heterostructured photocatalyst driven by visible light , 2015 .

[81]  David M. Cwiertny,et al.  Synthesis and optimization of Ag-TiO2 composite nanofibers for photocatalytic treatment of impaired water sources. , 2015, Journal of hazardous materials.

[82]  Liping Chen,et al.  Understanding and removing surface states limiting charge transport in TiO2 nanowire arrays for enhanced optoelectronic device performance† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04076k , 2015, Chemical science.

[83]  Huijun Zhao,et al.  Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. , 2015, Water research.

[84]  R. Habchi,et al.  Tunable properties of GO-doped CoFe2O4 nanofibers elaborated by electrospinning , 2015 .

[85]  N. A. Deskins,et al.  The interactions between TiO2 and graphene with surface inhomogeneity determined using density functional theory. , 2015, Physical chemistry chemical physics : PCCP.

[86]  C. Xie,et al.  CdS/TiO2 nanocomposite film and its enhanced photoelectric responses to dry air and formaldehyde induced by visible light at room temperature , 2015 .

[87]  R. Qiu,et al.  The photocatalytic interaction of Cr(VI) ions and phenol on polymer-modified TiO2 under visible light irradiation , 2015, Kinetics and Catalysis.

[88]  Seungho Yu,et al.  A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process. , 2015, Journal of hazardous materials.

[89]  G. Xu,et al.  Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation , 2015 .

[90]  Weidong Shi,et al.  Ag-Decorated ATaO3 (A = K, Na) Nanocube Plasmonic Photocatalysts with Enhanced Photocatalytic Water-Splitting Properties. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[91]  P. Ciambelli,et al.  Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation , 2015 .

[92]  Patrick Cognet,et al.  Green Process Engineering : From Concepts to Industrial Applications , 2015 .

[93]  I. Ganesh,et al.  Recent Advances on TiO 2 Thin Film Based Photocatalytic Applications (A Review) , 2015 .

[94]  Xiaohong Xu,et al.  Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries. , 2015, ACS applied materials & interfaces.

[95]  M. Bechelany,et al.  A highly active based graphene cathode for the electro-fenton reaction , 2015 .

[96]  Dandan Zhou,et al.  Visible‐light photocatalytic degradation of methyl orange over spherical activated carbon‐supported and Er3+:YAlO3‐doped TiO2 in a fluidized bed , 2015 .

[97]  Wanzhen Xu,et al.  Recent progress in enhancing photocatalytic efficiency of TiO2-based materials , 2015 .

[98]  S. K. Mehta,et al.  Efficient photocatalytic degradation of brilliant green using Sr-doped TiO2 nanoparticles , 2015 .

[99]  Na Zhou,et al.  Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics , 2015 .

[100]  Donats Erts,et al.  Tuning of ZnO 1D nanostructures by atomic layer deposition and electrospinning for optical gas sensor applications , 2015, Nanotechnology.

[101]  Zhongyi Jiang,et al.  Synthesis of Ag/TiO2 Nanotube Heterojunction with Improved Visible-Light Photocatalytic Performance Inspired by Bioadhesion , 2015 .

[102]  Zhiqun Lin,et al.  One-dimensional densely aligned perovskite-decorated semiconductor heterojunctions with enhanced photocatalytic activity. , 2015, Small.

[103]  J. Hupka,et al.  Transparent thin films of Cu-TiO_2 with visible light photocatalytic activity , 2015, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[104]  A. Azapagic,et al.  Removal of organic compounds from water: life cycle environmental impacts and economic costs of the Arvia process compared to granulated activated carbon , 2015 .

[105]  A. Gopalan,et al.  Efficient visible-light-driven photocatalytic degradation of nitrophenol by using graphene-encapsulated TiO₂ nanowires. , 2015, Journal of hazardous materials.

[106]  James Allan,et al.  The molecular identification of organic compounds in the atmosphere: state of the art and challenges. , 2015, Chemical reviews.

[107]  Tianxi Liu,et al.  Enhanced visible-light photocatalytic performance of electrospun carbon-doped TiO2/halloysite nanotube hybrid nanofibers. , 2015, Journal of colloid and interface science.

[108]  M. Bowker,et al.  Photocatalytic hydrogen production by reforming of methanol using Au/TiO2, Ag/TiO2 and Au-Ag/TiO2 catalysts , 2015 .

[109]  Z. Stephens,et al.  Composite WO3/TiO2 nanostructures for high electrochromic activity. , 2015, ACS applied materials & interfaces.

[110]  Juan Xu,et al.  Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light , 2015 .

[111]  Jinhua Ye,et al.  Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. , 2015, Angewandte Chemie.

[112]  Xiaohong Xu,et al.  Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation. , 2015, Nanoscale.

[113]  Liqun Mao,et al.  Nickel nanoparticles modified CdS – A potential photocatalyst for hydrogen production through water splitting under visible light irradiation , 2015 .

[114]  M. Dutta,et al.  Superior photocatalytic performance of reduced graphene oxide wrapped electrospun anatase mesoporous TiO 2 nanofibers , 2014 .

[115]  Kui Zhang,et al.  Synthesis and characterization of N-doped TiO2 loaded onto activated carbon fiber with enhanced visible-light photocatalytic activity , 2014 .

[116]  Y. H. Li,et al.  Preparation of Graphene-TiO2 nanotubes/nanofibers composites as an enhanced visible light photocatalyst using a hybrid synthetic strategy , 2014 .

[117]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[118]  Q. Li,et al.  High electrochemical performance based on the TiO2 nanobelt@few-layered MoS2 structure for lithium-ion batteries. , 2014, Nanoscale.

[119]  Hong Liu,et al.  Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. , 2014, Chemical Society reviews.

[120]  Jiaqiang Wang,et al.  Visible-Light Degradation of Dyes and Phenols over Mesoporous Titania Prepared by Using Anthocyanin from Red Radish as Template , 2014 .

[121]  B. Hameed,et al.  Development and photocatalytic activities of TiO2 doped with Ca–Ce–W in the degradation of acid red 1 under visible light irradiation , 2014 .

[122]  Kun Han,et al.  Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria. , 2014, ACS applied materials & interfaces.

[123]  Hong Huang,et al.  Construction of heterostructured g-C₃N₄/Ag/TiO₂ microspheres with enhanced photocatalysis performance under visible-light irradiation. , 2014, ACS applied materials & interfaces.

[124]  Jianshe Liu,et al.  Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. , 2014, Chemical Society reviews.

[125]  K. Domen,et al.  Core/Shell Structured La- and Rh-Codoped SrTiO3 as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting under Visible Light Irradiation , 2014 .

[126]  C. Lai,et al.  Post-annealing treatment for Cu-TiO2 nanotubes and their use in photocatalytic methyl orange degradation and Pb(II) heavy metal ions removal , 2014 .

[127]  G. Plesch,et al.  Hydrogen production by photocatalytic ethanol reforming using Eu- and S-doped anatase , 2014 .

[128]  Yongtao Lu,et al.  Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation. , 2014, Physical chemistry chemical physics : PCCP.

[129]  T. Do,et al.  Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis. , 2014, Angewandte Chemie.

[130]  Lan Sun,et al.  Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis , 2014 .

[131]  Stacey F. Bent,et al.  A brief review of atomic layer deposition: from fundamentals to applications , 2014 .

[132]  N. Biyikli,et al.  Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition. , 2014, Nanoscale.

[133]  J. M. Quiroga,et al.  Degradation of drugs in water with advanced oxidation processes and ozone. , 2014, Journal of environmental management.

[134]  H. Richnow,et al.  Degradation of hydrocarbons under methanogenic conditions in different geosystems , 2014 .

[135]  M. Xing,et al.  Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. , 2014, Journal of the American Chemical Society.

[136]  S. Pillai,et al.  Solar photocatalysis for water disinfection: Materials and reactor design , 2014 .

[137]  Xinghua Li,et al.  Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting , 2014, Nanotechnology.

[138]  X. Verykios,et al.  Kinetic and mechanistic study of the photocatalytic reforming of methanol over Pt/TiO2 catalyst , 2014 .

[139]  Tomoyuki Makino,et al.  Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize? , 2014, Journal of hazardous materials.

[140]  Ding Mingyue,et al.  Hierarchical heterostructure of CdS nanoparticles sensitized electrospun TiO2 nanofibers with enhanced photocatalytic activity , 2014 .

[141]  Ruthann A Rudel,et al.  Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. , 2014, The Science of the total environment.

[142]  R. Viter,et al.  Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition , 2013, Beilstein journal of nanotechnology.

[143]  P. Déjardin,et al.  Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition. , 2013, Nanoscale.

[144]  P. Du,et al.  Photocatalytic degradation of Rhodamine B using electrospun TiO2 and ZnO nanofibers: a comparative study , 2013, Journal of Materials Science.

[145]  P. Déjardin,et al.  Enhanced Ionic Transport Mechanism by Gramicidin A Confined Inside Nanopores Tuned by Atomic Layer Deposition , 2013 .

[146]  D. Bavykin,et al.  Hierarchical tube-in-tube structures prepared by electrophoretic deposition of nanostructured titanates into a TiO2 nanotube array. , 2013, Chemical communications.

[147]  J. C. Rimada,et al.  Hybrid Carbon Nanotubes–TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells , 2013 .

[148]  Keqiang Chen,et al.  Synthesis and photovoltaic performance of reduced graphene oxide–TiO2 nanoparticles composites by solvothermal method , 2013 .

[149]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[150]  C. Xie,et al.  Enhanced Photocatalytic Activity of Chemically Bonded TiO2/Graphene Composites Based on the Effective Interfacial Charge Transfer through the C–Ti Bond , 2013 .

[151]  Danzhen Li,et al.  A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response , 2013 .

[152]  Zhiqun Lin,et al.  p-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities , 2013 .

[153]  M. Xing,et al.  Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol , 2013 .

[154]  M. Kormunda,et al.  TiO2-graphene oxide nanocomposite as advanced photocatalytic materials , 2013, Chemistry Central Journal.

[155]  Patrick Drogui,et al.  Modified TiO2 For Environmental Photocatalytic Applications: A Review , 2013 .

[156]  O. E. Abdel-Salam,et al.  Rapid synthesis of titania–silica nanoparticles photocatalyst by a modified sol–gel method for cyanide degradation and heavy metals removal , 2013 .

[157]  M. Seery,et al.  A highly efficient TiO(2-x)C(x) nano-heterojunction photocatalyst for visible light induced antibacterial applications. , 2013, ACS applied materials & interfaces.

[158]  Willem Goedkoop,et al.  Distinguishing the effects of habitat degradation and pesticide stress on benthic invertebrates using stressor-specific metrics. , 2013, The Science of the total environment.

[159]  N. Zhang,et al.  Synthesis of fullerene-, carbon nanotube-, and graphene-TiO₂ nanocomposite photocatalysts for selective oxidation: a comparative study. , 2013, ACS applied materials & interfaces.

[160]  H. Hayashi,et al.  Preparation and Characterization of Nanostructured TiO2 Thin Films by Hydrothermal and Anodization Methods , 2013 .

[161]  Yoshimi Tanaka,et al.  Selective dehydrogenation of aromatic alcohols photocatalyzed by Pd-deposited CdS–TiO2in aqueous solution using visible light , 2013 .

[162]  Zhiqun Lin,et al.  High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. , 2012, Journal of the American Chemical Society.

[163]  Jiaguo Yu,et al.  UV- and Visible-Light Photocatalytic Activity of Simultaneously Deposited and Doped Ag/Ag(I)-TiO2 Photocatalyst , 2012 .

[164]  N. Barakat,et al.  Inactivation of pathogenic Klebsiella pneumoniae by CuO/TiO2 nanofibers: A multifunctional nanomaterial via one-step electrospinning , 2012 .

[165]  Z. Yaakob,et al.  Characterization and the hydrogen storage capacity of titania-coated electrospun boron nitride nanofibers , 2012 .

[166]  X. Zhang,et al.  Electrospun TiO2–Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries , 2012 .

[167]  Bo-Hye Kim,et al.  TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis , 2012 .

[168]  C. F. Ng,et al.  TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties , 2012 .

[169]  X. Duan,et al.  Towards highly efficient photocatalysts using semiconductor nanoarchitectures , 2012 .

[170]  Tae Woo Kim,et al.  A strong electronic coupling between graphene nanosheets and layered titanate nanoplates: a soft-chemical route to highly porous nanocomposites with improved photocatalytic activity. , 2012, Small.

[171]  Chan Beum Park,et al.  Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene , 2012, Advanced materials.

[172]  Seeram Ramakrishna,et al.  Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. , 2012, ACS applied materials & interfaces.

[173]  Xinjun Li,et al.  CdS-sensitized ZnO nanorod arrays coated with TiO2 layer for visible light photoelectrocatalysis , 2012, Journal of Materials Science.

[174]  A. Xu,et al.  One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. , 2012, Nanoscale.

[175]  G. Eranna,et al.  Metal Oxide Nanostructures as Gas Sensing Devices , 2011 .

[176]  Seong-Hyeon Hong,et al.  A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method , 2011 .

[177]  M. Dong,et al.  Unique double-shelled hollow silica microspheres: template-guided self-assembly, tunable pore size, high thermal stability, and their application in removal of neutral red , 2011 .

[178]  David Grosso,et al.  How to exploit the full potential of the dip-coating process to better control film formation , 2011 .

[179]  Rong Wang,et al.  Carbon-sensitized and nitrogen-doped TiO2 for photocatalytic degradation of sulfanilamide under visible-light irradiation. , 2011, Water research.

[180]  S. Lee,et al.  Photocatalytic coatings of silver―TiO2 nanocomposites on foamed waste-glass prepared by sonochemical process , 2011 .

[181]  S. Park,et al.  Synthesis of TiO2 Nanotube by Hydrothermal Method and Application for Dye-Sensitized Solar Cell , 2011 .

[182]  J. Akhtar,et al.  A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass , 2011 .

[183]  Young Kwang Kim,et al.  Reversing CdS Preparation Order and Its Effects on Photocatalytic Hydrogen Production of CdS/Pt-TiO2 Hybrids Under Visible Light , 2011 .

[184]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[185]  Saber Ahmed,et al.  Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. , 2011, Journal of environmental management.

[186]  Shalini Chaturvedi,et al.  A review on nano-TiO2 sol–gel type syntheses and its applications , 2011 .

[187]  Xiaowei Zhao,et al.  Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. , 2011, Journal of the American Chemical Society.

[188]  D. King,et al.  Optimal preparation of Pt/TiO2 photocatalysts using atomic layer deposition , 2010 .

[189]  T. Schimmel Beilstein Journal of Nanotechnology , 2010, Beilstein journal of nanotechnology.

[190]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[191]  Murat Kılıç,et al.  Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity , 2010 .

[192]  Danzhen Li,et al.  Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds , 2010, Nanotechnology.

[193]  A. Moshfegh,et al.  Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study , 2010 .

[194]  L. Philip,et al.  Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. , 2010 .

[195]  G. Shi,et al.  Self-assembled graphene hydrogel via a one-step hydrothermal process. , 2010, ACS nano.

[196]  Tiancun Xiao,et al.  Preparation of highly visible-light active N-doped TiO2 photocatalyst , 2010 .

[197]  Yiu-Wing Mai,et al.  Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties , 2010 .

[198]  Yueming Li,et al.  P25-graphene composite as a high performance photocatalyst. , 2010, ACS nano.

[199]  Sun-Woo Choi,et al.  Synthesis and Gas Sensing Properties of TiO2–ZnO Core‐Shell Nanofibers , 2009 .

[200]  B. Hameed,et al.  Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. , 2009, Journal of hazardous materials.

[201]  Xi Chen,et al.  Synthesis and photocatalytic applications of Ag/TiO2-nanotubes. , 2009, Talanta.

[202]  Jimmy C. Yu,et al.  A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. , 2009, Environmental science & technology.

[203]  S. Panigrahi,et al.  Fundamental understanding and modeling of spin coating process: A review , 2009 .

[204]  Guohua Chen,et al.  Photoelectrocatalytic materials for environmental applications , 2009 .

[205]  S. Luo,et al.  Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays , 2009 .

[206]  Kian Ping Loh,et al.  Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties , 2009 .

[207]  L. Forró,et al.  Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light , 2009 .

[208]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[209]  M. Purkait,et al.  Effects of dip coating parameters on the morphology and transport properties of cellulose acetate–ceramic composite membranes , 2009 .

[210]  U. Gösele,et al.  Multitwinned spinel nanowires by assembly of nanobricks via oriented attachment: a case study of Zn2TiO4. , 2009, ACS nano.

[211]  A. Fujishima,et al.  Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. , 2008, Environmental science & technology.

[212]  Zhongbiao Wu,et al.  Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect , 2008, Nanotechnology.

[213]  Jianhui Sun,et al.  Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. , 2008, Journal of hazardous materials.

[214]  S. Doh,et al.  Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. , 2008, Journal of hazardous materials.

[215]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[216]  Richard M. Lueptow,et al.  Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. , 2008, Environmental science & technology.

[217]  Hyunwoong Park,et al.  Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production , 2008 .

[218]  Y. Kusumoto,et al.  Carbon nanotubes synergistically enhance photocatalytic activity of TiO2 , 2008 .

[219]  Xiaobo Chen,et al.  The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. , 2008, Journal of the American Chemical Society.

[220]  M. Muneer,et al.  Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide , 2008 .

[221]  Younan Xia,et al.  Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. , 2008, Nano letters.

[222]  Klaus Kern,et al.  Electronic transport properties of individual chemically reduced graphene oxide sheets. , 2007, Nano letters.

[223]  L. Österlund,et al.  A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase–rutile TiO2 nanoparticles: Role of surface intermediates , 2007 .

[224]  Jinlong Zhang,et al.  Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity , 2007 .

[225]  D. Robert Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications , 2007 .

[226]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[227]  R. Binions,et al.  Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol‐Assisted CVD , 2007 .

[228]  Yunfeng Lu,et al.  Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. , 2007, Journal of the American Chemical Society.

[229]  A. Testino,et al.  Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. a systematic approach. , 2007, Journal of the American Chemical Society.

[230]  M. Ritala,et al.  Atomic Layer Deposition of Nanostructured TiO2 Photocatalysts via Template Approach , 2007 .

[231]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .

[232]  V. Gupta,et al.  Advances in water treatment by adsorption technology , 2006, Nature Protocols.

[233]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[234]  Jingdong Lin,et al.  MWNT-TiO2:Ni composite catalyst : A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination , 2006 .

[235]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[236]  Oleg M. Sarkisov,et al.  Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO2 , 2006 .

[237]  H. Fu,et al.  Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity , 2006 .

[238]  W. Ho,et al.  Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity , 2006 .

[239]  Song Liu,et al.  Microporous SiO2-TiO2 nanosols pillared montmorillonite for photocatalytic decomposition of methyl orange , 2006 .

[240]  Qing Peng,et al.  Near monodisperse TiO2 nanoparticles and nanorods. , 2006, Chemistry.

[241]  Bin Ding,et al.  Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications , 2006, Nanotechnology.

[242]  Jinlong Zhang,et al.  Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+ , 2006 .

[243]  J. Pan,et al.  Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2 Films and Their Photocatalytic Properties , 2006 .

[244]  W. Choi,et al.  Visible light active platinum-ion-doped TiO2 photocatalyst. , 2005, The journal of physical chemistry. B.

[245]  Peixiang Cai,et al.  Catalytic activities of Pd–TiO2 film towards the oxidation of formic acid , 2005 .

[246]  Ioannis S. Chronakis,et al.  Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review , 2005 .

[247]  A. Cornet,et al.  Transition metals (Co, Cu) as additives on hydrothermally treated Tio2 for gas sensing , 2005 .

[248]  Agus Haryanto,et al.  Current status of hydrogen production techniques by steam reforming of ethanol : A review , 2005 .

[249]  M. Hon,et al.  Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. , 2005, The journal of physical chemistry. B.

[250]  A. El-Midany,et al.  Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique , 2005 .

[251]  J. Pan,et al.  Selective control of cubic and hexagonal mesophases for titania and silica thin films with spin-coating , 2005 .

[252]  M. Suwalsky,et al.  Evidence for the hydration effect at the semiconductor phospholipid-bilayer interface by TiO2 photocatalysis. , 2005, Journal of photochemistry and photobiology. B, Biology.

[253]  R. L. Sawhney,et al.  Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-Phase Photocatalysis: A Review , 2004 .

[254]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[255]  V. Nadtochenko,et al.  New Evidence for TiO2 Photocatalysis during Bilayer Lipid Peroxidation , 2004 .

[256]  T. Viraraghavan,et al.  Treatment of pulp and paper mill wastewater--a review. , 2004, The Science of the total environment.

[257]  Fu-Shen Zhang,et al.  Photocatalytic removal and recovery of mercury from water using TiO2-modified sewage sludge carbon , 2004 .

[258]  Fu-hui Wang,et al.  Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering , 2004 .

[259]  B. K. Dutta,et al.  Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. , 2004, Journal of hazardous materials.

[260]  Jaesung Song,et al.  Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying , 2004 .

[261]  V. Murugesan,et al.  Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. , 2004, Water research.

[262]  Jinlong Zhang,et al.  Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water , 2004 .

[263]  E. Robens,et al.  Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. , 2004, Chemosphere.

[264]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[265]  M. Yoshikawa,et al.  Fabrication and characterization of C-doped anatase TiO2 photocatalysts , 2004 .

[266]  W. Yao,et al.  Structure and photocatalytic performances of glass/SnO2/TiO2 interface composite film , 2004 .

[267]  Michael Grätzel,et al.  Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals , 2003 .

[268]  T Ihara,et al.  Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping , 2003 .

[269]  V. Murugesan,et al.  Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2 , 2003 .

[270]  D. Salari,et al.  Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters , 2003 .

[271]  Carlo Vandecasteele,et al.  Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. , 2003, Environmental pollution.

[272]  OhnoTeruhisa,et al.  Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light , 2003 .

[273]  K. Asai,et al.  Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2 , 2003 .

[274]  K. Asai,et al.  Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations , 2002 .

[275]  Takayuki Kitamura,et al.  Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells , 2002 .

[276]  R. Moreira,et al.  Simultaneous photocatalytic Cr(VI) reduction and dye oxidation in a TiO2 slurry reactor , 2002 .

[277]  T. Tatsumi,et al.  Preparation of Wormhole-like Mesoporous TiO2 with an Extremely Large Surface Area and Stabilization of Its Surface by Chemical Vapor Deposition , 2002 .

[278]  A. Morawski,et al.  Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide , 2002 .

[279]  G. Marcì,et al.  Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol , 2002 .

[280]  Darrell H. Reneker,et al.  Taylor Cone and Jetting from Liquid Droplets in Electrospinning of Nanofibers , 2001 .

[281]  N. Kannan,et al.  Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study , 2001 .

[282]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[283]  A. T. Johnson,et al.  Electrostatically-generated nanofibers of electronic polymers , 2001 .

[284]  H. Yamashita,et al.  Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method. , 2001, Journal of synchrotron radiation.

[285]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[286]  Edward J. Wolfrum,et al.  Bactericidal mode of titanium dioxide photocatalysis , 2000 .

[287]  Edward J. Wolfrum,et al.  Bactericidal Activity of Photocatalytic TiO2 Reaction: toward an Understanding of Its Killing Mechanism , 1999, Applied and Environmental Microbiology.

[288]  Kazumichi Yanagisawa and,et al.  Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature , 1999 .

[289]  Patrick T. Underhill,et al.  Spin coating of thin and ultrathin polymer films , 1998 .

[290]  J. Hubert,et al.  Singlet oxygen drying of alkyd resins and model compounds , 1997 .

[291]  P. Pichat,et al.  Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis : relative photonic efficiencies ζr , 1996 .

[292]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[293]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[294]  Darrell H. Reneker,et al.  Electrospinning process and applications of electrospun fibers , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[295]  André M. Braun,et al.  Photochemical processes for water treatment , 1993 .

[296]  Norman N. Li Separation and Purification Technology , 1992 .

[297]  A. Heller,et al.  Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds , 1992 .

[298]  Y. S. Lin,et al.  CVD of solid oxides in porous substrates for ceramic membrane modification , 1992 .

[299]  Alan J. Hurd,et al.  Fundamentals of sol-gel dip coating , 1991 .

[300]  T. Matsunaga,et al.  Continuous-sterilization system that uses photosemiconductor powders , 1988, Applied and environmental microbiology.

[301]  H. Yokoyama,et al.  Function of Substrate Bias Potential for Formation of Cubic Boron Nitride Films in Plasma CVD Technique , 1987 .

[302]  P. Arlien‐Søborg,et al.  Science of the Total Environment , 2018 .

[303]  Peter F. James,et al.  The factors affecting the thickness of sol-gel derived silica coatings prepared by dipping , 1986 .

[304]  T. Nakajima,et al.  Photoelectrochemical sterilization of microbial cells by semiconductor powders , 1985 .

[305]  D. Hess Plasma‐enhanced CVD: Oxides, nitrides, transition metals, and transition metal silicides , 1984 .

[306]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[307]  J. GRIFFITHS,et al.  Dyes and Pigments , 1971, Nature.

[308]  高橋 秀俊,et al.  Japanese Journal of Applied Physics , 1962, Nature.

[309]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[310]  T. Natarajan,et al.  TiO2-High Surface Area Materials Based Composite Photocatalytic Nanomaterials for Degradation of Pollutants: A Review , 2018 .

[311]  Daibing Luo,et al.  CO2 Reduction by Photocatalysis on TiO2 , 2018 .

[312]  C. Chu,et al.  Selective copper metallization of nonconductive materials using jet-circulating electrodeposition , 2018 .

[313]  D. Velauthapillai,et al.  Size controlled synthesis of TiO2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic applications , 2018 .

[314]  H. Bruning,et al.  Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species , 2018 .

[315]  R. Viter,et al.  Enhanced photocatalytic performance of novel electrospun BN/TiO2 composite nanofibers , 2017 .

[316]  Nahed Dokhane,et al.  Solar Energy Materials and Solar Cells , 2017 .

[317]  R. Viter,et al.  ALD thin ZnO layer as an active medium in a fiber-optic Fabry–Perot interferometer , 2015 .

[318]  R. Viter,et al.  Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun TiO2 nanofibers , 2015 .

[319]  Jiaguo Yu,et al.  Solvothermal synthesis and photocatalytic performance of Mn4+-doped anatase nanoplates with exposed {0 0 1} facets , 2015 .

[320]  Vincent G. Gomes,et al.  Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis , 2015 .

[321]  Hua-ming Li,et al.  Synthesis of molecularly imprinted polypyrrole/titanium dioxide nanocomposites and its selective photocatalytic degradation of rhodamine B under visible light irradiation , 2014 .

[322]  Wei Yan,et al.  Fabrication of one-dimensional heterostructured TiO2@SnO2 with enhanced photocatalytic activity , 2014 .

[323]  T. Peng,et al.  Multiwalled carbon nanotube-TiO 2 nanocomposite for visible-light-induced photocatalytic hydrogen evolution , 2014 .

[324]  Sergio Manzetti,et al.  Environmental Technology Reviews , 2014 .

[325]  Atef Atyaoui ELABORATION DE TiO2 SOUS FORME DE COUCHE MINCE DOPÉE ET NANOTUBULAIRE : CARACTÉRISATION ÉLECTROCHIMIQUE ET PERFORMANCE PHOTOCATALYTIQUE , 2013 .

[326]  Maximilian Posch,et al.  Critical Loads of Heavy Metals for Soils , 2013 .

[327]  Mato Knez,et al.  Atomic layer deposition of nanostructured materials , 2012 .

[328]  A. Sumper,et al.  Renewable and Sustainable Energy Reviews , 2012 .

[329]  J. Pikul,et al.  Current Opinion in Solid State and Materials Science , 2012 .

[330]  Hemin Zhang,et al.  Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response , 2011 .

[331]  H. Illias,et al.  Molecular Crystals and Liquid Crystals , 2011 .

[332]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[333]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[334]  Elsevier Sdol Journal of Solid State Chemistry , 2009 .

[335]  W. Baran,et al.  The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2 , 2008 .

[336]  Jihuai Wu,et al.  Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite , 2008 .

[337]  Jie Liang,et al.  Preparation, characterization and photocatalytic activities of boron- and cerium-codoped TiO2. , 2007, Journal of environmental sciences.

[338]  Nancy G. Tassi,et al.  Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process , 2004 .

[339]  P. Kamat,et al.  Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2−Au Composite Nanoparticles , 2003 .

[340]  Philip D. Rack,et al.  Chemical Vapor Deposition , 2002 .

[341]  K. Nishio,et al.  Preparation and electrical properties of ITO thin films by dip-coating process , 1996, Journal of Materials Science.

[342]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[343]  C. Minero,et al.  Kinetic Studies in Heterogeneous Photocatalysis. 2. TiO2-mediated degradation of 4-chlorophenol alone and in a three component mixture of 4-chlorophenol, 2,4-dichlorophenol and 2,4,5-trichlorophenol in air equilibrated aqueous media , 1989 .

[344]  B. Ohtani,et al.  Photocatalytic dehydrogenation of aliphatic alcohols by aqueous suspensions of platinized titanium dioxide , 1985 .

[345]  ScienceDirect,et al.  Composites science and technology , 1985 .

[346]  李翠霞 Environmental science & technology. , 1970, Analytical chemistry.

[347]  Sensors and Actuators: B. Chemical , 2022 .

[348]  P. Hrma Crystallization during processing of nuclear waste glass , 2010 .