Transcript and protein expression analysis of proteases in the blood stages of Plasmodium falciparum.

[1]  Simone Brogi,et al.  In silico study of subtilisin-like protease 1 (SUB1) from different Plasmodium species in complex with peptidyl-difluorostatones and characterization of potent pan-SUB1 inhibitors , 2016, Journal of molecular graphics & modelling.

[2]  J. Vinetz,et al.  Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X , 2016, Malaria Journal.

[3]  A. Aly,et al.  A Plasmodium α/β‐hydrolase modulates the development of invasive stages , 2015, Cellular microbiology.

[4]  S. Howell,et al.  The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin , 2014, Nature Communications.

[5]  R. Bhatnagar,et al.  Proteolytic activity of Plasmodium falciparum subtilisin-like protease 3 on parasite profilin, a multifunctional protein. , 2013, Molecular and biochemical parasitology.

[6]  J. Gomes,et al.  Development of Plasmodium falciparum protease inhibitors in the past decade (2002-2012). , 2013, Current medicinal chemistry.

[7]  A. Koster,et al.  Loss‐of‐function analyses defines vital and redundant functions of the Plasmodium rhomboid protease family , 2013, Molecular microbiology.

[8]  G. Pradel,et al.  Molecular mechanisms of host cell egress by malaria parasites. , 2012, International journal of medical microbiology : IJMM.

[9]  Virander S. Chauhan,et al.  Expression and characterization of catalytic domain of Plasmodium falciparum subtilisin-like protease 3. , 2012, Molecular and biochemical parasitology.

[10]  Alex Bateman,et al.  MEROPS: the database of proteolytic enzymes, their substrates and inhibitors , 2011, Nucleic Acids Res..

[11]  Kathleen E. Rankin,et al.  Hostile Takeover by Plasmodium: Reorganization of Parasite and Host Cell Membranes during Liver Stage Egress , 2011, PLoS pathogens.

[12]  J. Whisstock,et al.  Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases , 2011, Proceedings of the National Academy of Sciences.

[13]  Subra Suresh,et al.  Biophysics of Malarial Parasite Exit from Infected Erythrocytes , 2011, PloS one.

[14]  A. Kuehn,et al.  Malaria proteases mediate inside‐out egress of gametocytes from red blood cells following parasite transmission to the mosquito , 2011, Cellular microbiology.

[15]  M. Abkarian,et al.  A novel mechanism for egress of malarial parasites from red blood cells. , 2011, Blood.

[16]  M. Bogyo,et al.  Functional studies of Plasmodium falciparum dipeptidyl aminopeptidase I using small molecule inhibitors and active site probes. , 2010, Chemistry & biology.

[17]  J. Zimmerberg,et al.  New Stages in the Program of Malaria Parasite Egress Imaged in Normal and Sickle Erythrocytes , 2010, Current Biology.

[18]  H. Bujard,et al.  A multifunctional serine protease primes the malaria parasite for red blood cell invasion , 2009, The EMBO journal.

[19]  Eileen Kraemer,et al.  PlasmoDB: a functional genomic database for malaria parasites , 2008, Nucleic Acids Res..

[20]  P. Rosenthal,et al.  Plasmodium Food Vacuole Plasmepsins Are Activated by Falcipains* , 2008, Journal of Biological Chemistry.

[21]  T. Schirmeister,et al.  Effect of protease inhibitors on exflagellation in Plasmodium falciparum. , 2008, Molecular and biochemical parasitology.

[22]  S. Kappe,et al.  Malaria: progress, perils, and prospects for eradication. , 2008, The Journal of clinical investigation.

[23]  Matthew Bogyo,et al.  Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. , 2008, Nature chemical biology.

[24]  C. Lavazec,et al.  PfCCp proteins of Plasmodium falciparum: gametocyte-specific expression and role in complement-mediated inhibition of exflagellation. , 2008, International journal for parasitology.

[25]  C. Withers-Martinez,et al.  Subcellular Discharge of a Serine Protease Mediates Release of Invasive Malaria Parasites from Host Erythrocytes , 2007, Cell.

[26]  A. Olivieri,et al.  The role of osmiophilic bodies and Pfg377 expression in female gametocyte emergence and mosquito infectivity in the human malaria parasite Plasmodium falciparum , 2007, Molecular microbiology.

[27]  S. Dalal,et al.  Roles for Two Aminopeptidases in Vacuolar Hemoglobin Catabolism in Plasmodium falciparum* , 2007, Journal of Biological Chemistry.

[28]  Markus S. Mueller,et al.  Antibodies elicited by a virosomally formulated Plasmodium falciparum serine repeat antigen-5 derived peptide detect the processed 47kDa fragment both in sporozoites and merozoites , 2007, Peptides.

[29]  G. Pradel,et al.  Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies , 2007, Parasitology.

[30]  I. Gluzman,et al.  A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast , 2007, Molecular microbiology.

[31]  M. C. Rodríguez,et al.  Plasmodium berghei: effect of protease inhibitors during gametogenesis and early zygote development. , 2005, Experimental parasitology.

[32]  C. Withers-Martinez,et al.  Molecular Identification of a Malaria Merozoite Surface Sheddase , 2005, PLoS pathogens.

[33]  J. Zimmerberg,et al.  Membrane Transformation during Malaria Parasite Release from Human Red Blood Cells , 2005, Current Biology.

[34]  I. Gluzman,et al.  A Plasmodium falciparum Dipeptidyl Aminopeptidase I Participates in Vacuolar Hemoglobin Degradation* , 2004, Journal of Biological Chemistry.

[35]  L. Aravind,et al.  A Multidomain Adhesion Protein Family Expressed in Plasmodium falciparum Is Essential for Transmission to the Mosquito , 2004, The Journal of experimental medicine.

[36]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[37]  K. Williamson Pfs230: from malaria transmission‐blocking vaccine candidate toward function , 2003, Parasite immunology.

[38]  Yufeng Wang,et al.  Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. , 2003, Genome research.

[39]  T. Mitamura,et al.  Differential localization of processed fragments of Plasmodium falciparum serine repeat antigen and further processing of its N-terminal 47 kDa fragment. , 2002, Parasitology international.

[40]  Ogobara K. Doumbo,et al.  The pathogenic basis of malaria , 2002, Nature.

[41]  M. Wasunna,et al.  Plasmodium falciparum: purification of the various gametocyte developmental stages from in vitro-cultivated parasites. , 1998, The American journal of tropical medicine and hygiene.

[42]  D. Kaslow,et al.  Plasmodium falciparum Pfs40, renamed Pf39, is localized to an intracellular membrane-bound compartment and is not sexual stage-specific. , 1997, Molecular and biochemical parasitology.

[43]  K. Williamson,et al.  Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of Plasmodium falciparum to mosquitoes. , 1995, Molecular and biochemical parasitology.

[44]  R. Carter,et al.  Plasmodium falciparum: parasites defective in early stages of gametocytogenesis. , 1995, Experimental parasitology.

[45]  B. Knapp,et al.  Plasmodium falciparum aldolase: gene structure and localization. , 1990, Molecular and biochemical parasitology.

[46]  R. Anders,et al.  Integral membrane protein located in the apical complex of Plasmodium falciparum , 1989, Molecular and cellular biology.

[47]  J. Vanderberg,et al.  Complete in vitro maturation of Plasmodium falciparum gametocytes , 1981, Nature.

[48]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[49]  M. Bogyo,et al.  Proteases as regulators of pathogenesis: examples from the Apicomplexa. , 2012, Biochimica et biophysica acta.

[50]  J. E. Hyde,et al.  Major surface antigen gene of a human malaria parasite cloned and expressed in bacteria , 1984, Nature.