On the asymptotic convergence of collocation methods

We prove quasioptimal and optimal order estimates in various Sobolev norms for the approximation of linear strongly elliptic pseudodifferential equations in one independent variable by the method of nodal collocation by odd degree polynomial splines. The analysis pertains in particular to many of the boundary element methods used for numerical computation in engineering applications. Equations to which the analysis is applied include Fredholm integral equations of the second kind, certain first kind Fredholm equations, singular integral equations involving Cauchy kernels, a variety of integro-differential equations, and two-point boundary value problems for ordinary differential equations. The error analysis is based on an equivalence which we establish between the collocation methods and certain nonstandard Galerkin methods. We compare the collocation method with a standard Galerkin method using splines of the same degree, showing that the Galerkin method is quasioptimal in a Sobolev space of lower index and furnishes optimal order approximation for a range of Sobolev indices containing and extending below that for the collocation method, and so the standard Galerkin method achieves higher rates of convergence.

[1]  Rand- und Eigenwertaufgaben in Sobolewschen Räumen , 1969 .

[2]  A Collocation–Galerkin Method for the Two Point Boundary Value Problem Using Continuous Piecewise Polynomial Spaces , 1977 .

[3]  Carlos Alberto Brebbia New Developments in Boundary Element Methods , 1978 .

[4]  Fehlerabschätzungen für Eigenwertnäherungen nach der Ersatzkernmethode bei Integralgleichungen , 1979 .

[5]  Simultaneous approximation in negative norms of arbitrary order , 1981 .

[6]  Dieter Gaier,et al.  Integralgleichungen erster Art und konforme Abbildung , 1976 .

[7]  J. Z. Zhu,et al.  The finite element method , 1977 .

[8]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[9]  Erik B. Hansen Numerical solution of integro-differential and singular integral equations for plate bending problems , 1976 .

[10]  Lothar Collatz,et al.  Numerische Behandlung von Differentialgleichungen , 1948 .

[11]  M. Atiyah,et al.  Seminar on the Atiyah-Singer Index Theorem. , 1968 .

[12]  L. Schumaker,et al.  Procedures for kernel approximation and solution of fredholm integral equations of the second kind , 1980 .

[13]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[14]  S. Christiansen,et al.  Condition number of matrices derived from two classes of integral equations , 1981 .

[15]  M. A. Jaswon,et al.  Integral equation methods in potential theory and elastostatics , 1977 .

[16]  David K. Kahaner,et al.  An Improved Method for Numerical Conformal Mapping , 1972 .

[17]  Wolfgang L. Wendland,et al.  Some applications of a galerkin‐collocation method for boundary integral equations of the first kind , 1984 .

[18]  G. Chandler Superconvergence of numerical solutions to second kind integral equations , 1980, Bulletin of the Australian Mathematical Society.

[19]  E. Hansen,et al.  An integral equation method for stress concentration problems in cylindrical shells , 1977 .

[20]  E. Sternberg,et al.  Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity , 1980 .

[21]  Carlos Alberto Brebbia,et al.  The Boundary Element Method for Engineers , 1978 .

[22]  W. Wendland On Galerkin Collocation Methods for Integral Equations of Elliptic Boundary Value Problems , 1980 .

[23]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[24]  Thomas R. Lucas,et al.  Some Collocation Methods for Nonlinear Boundary Value Problems , 1972 .

[25]  I. Babuska Error-bounds for finite element method , 1971 .

[26]  David Archer An O(h(4) ) Cubic Spline Collocation Method for Quasilinear Parabolic Equations , 1977 .

[27]  D. W. Arthur The Solution of Fredholm Integral Equations Using Spline Functions , 1973 .

[28]  Zur Konvergenz von Näherungsverfahren bezüglich verschiedener Normen , 1970 .

[29]  Ernst P. Stephan,et al.  Remarks to Galerkin and least squares methods with finite elements for general elliptic problems , 1976 .

[30]  Tosio Kato Perturbation theory for linear operators , 1966 .

[31]  Splinefunktionen bei der Lösung von Integralgleichungen , 1972 .

[32]  W. Wendland On The Asymptotic Convergence of Boundary Integral Methods , 1981 .

[33]  J. Cea Approximation variationnelle des problèmes aux limites , 1964 .

[34]  G. Hsiao,et al.  Solution of Boundary Value Problems by Integral Equations of the First Kind , 1973 .

[35]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[36]  W. Wendland,et al.  Über die Näherungsweise Lösung von Linearen Funktionalgleichungen , 1967 .

[37]  Developments in boundary element methods—1 , 1980 .

[38]  Joseph J. Kohn,et al.  An algebra of pseudo‐differential operators , 1965 .

[39]  Frédéric Riesz,et al.  Vorlesungen über Funktionalanalysis , 1982 .

[40]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[41]  J. W. Daniel,et al.  Extrapolated collocation for two-point boundary-value problems using cubic splines , 1975 .

[42]  F. Smithies,et al.  Singular Integral Equations , 1977 .

[43]  N. Muskhelishvili Some basic problems of the mathematical theory of elasticity , 1953 .

[44]  L. Collatz,et al.  Numerische Behandlung von Differentialgleichungen Band 3 , 1981 .

[45]  S. Prössdorf,et al.  A Finite Element Collocation Method for Singular Integral Equations , 1981 .

[46]  J. Aubin Approximation of Elliptic Boundary-Value Problems , 1980 .

[47]  Odd Tullberg,et al.  BEMSTAT — A New Type of Boundary Element Program for Two-Dimensional Elasticity Problems , 1981 .

[48]  M. Agranovich Elliptic Singular Integro-Differential Operators , 1965 .

[49]  C. D. Boor,et al.  The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines , 1966 .

[50]  Siegfried Prössdorf,et al.  Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen , 1977 .

[51]  V. D. Kupradze,et al.  Randwertaufgaben der Schwingungstheorie und Integralgleichungen , 1956 .

[52]  P. M. Prenter A Collection Method for the Numerical Solution of Integral Equations , 1973 .

[53]  F. Oliveira Collocation and residual correction , 1980 .

[54]  Erich Martensen,et al.  Berechnung der Druckverteilung an gitterprofilen in ebener Potentialströmung mit einer fredholmschen integralgleichung , 1959 .

[55]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[56]  George C. Hsiao,et al.  On the Two-Dimensional Exterior Boundary-Value Problems of Elasticity , 1976 .

[57]  K. Atkinson,et al.  A survey of numerical methods for the solution of Fredholm integral equations of the second kind , 1977 .

[58]  L. R. Scott,et al.  Simultaneous approximation in scales of Banach spaces , 1978 .

[59]  Hans-Peter Hoidn,et al.  Die Kollokationsmethode angewandt auf die Symmsche Integralgleichung , 1983 .

[60]  J. Nédélec,et al.  Numerical solution of an exterior Neumann problem using a double layer potential , 1978 .

[61]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[62]  P.J.T. Filippi,et al.  Layer potentials and acoustic diffraction , 1977 .

[63]  P. K. Banerjee,et al.  Developments in boundary element methods , 1979 .

[64]  H. Gutfreund,et al.  Potential methods in the theory of elasticity , 1965 .

[65]  G. Symm Numerical mapping of exterior domains , 1967 .

[66]  L. Collatz The numerical treatment of differential equations , 1961 .

[67]  Robert D. Russell,et al.  Collocation for systems of boundary value problems , 1974 .

[68]  Burton Wendroff,et al.  The Relation Between the Galerkin and Collocation Methods Using Smooth Splines , 1974 .

[69]  N. Muskhelishvili Some basic problems of the mathematical theory of elasticity : fundamental equations, plane theory of elasticity, torsion, and bending , 1953 .

[70]  P. Anselone,et al.  Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .

[71]  Stefan Hildebrandt,et al.  Constructive proofs of representation theorems in separable Hilbert space , 1964 .

[72]  G. Richter Superconvergence of piecewise polynomial Galerkin approximations, for Fredholm integral equations of the second kind , 1978 .

[73]  Frank J. Rizzo,et al.  An integral equation approach to boundary value problems of classical elastostatics , 1967 .

[74]  E. Houstis A collocation method for systems of nonlinear ordinary differential equations , 1978 .