The cloudy crystal ball: Electronic devices for logic

Abstract The invention of the transistor revolutionized electronics and brought new attention to solid-state physics. Transistors soon replaced relays and vacuum tubes in the logic of computing machinery and have made computers with many millions of devices possible. In the half-century since the advent of the transistor, scientists have invented and extolled a variety of other devices as replacements for it in electronic logic circuits. None has had any impact on computing. Only transistors provide the high gain with three-terminal control that is essential to the working of very large digital systems.

[1]  M E Prise,et al.  Optical digital processor using arrays of symmetric self-electrooptic effect devices. , 1991, Applied optics.

[2]  R W Keyes,et al.  Thermal limitations in optical logic. , 1969, Applied optics.

[3]  B K Jenkins,et al.  Sequential optical logic implementation. , 1984, Applied optics.

[4]  Kristof Sienicki,et al.  Molecular electronics and molecular electronic devices , 1993 .

[5]  P. Avouris,et al.  Nanotubes for electronics. , 2000, Scientific American.

[6]  Robert W. Keyes,et al.  Physics of digital devices , 1989 .

[7]  J.D. Meindl Ultra-large scale integration , 1984, IEEE Transactions on Electron Devices.

[8]  William Aspray,et al.  Computing before computers , 1990 .

[9]  Quantum computation: Solid-state qubits under control , 1999, Nature.

[10]  J. Preskill Quantum computing: pro and con , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[12]  Superconducting devices for digital systems , 1979 .

[13]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[14]  Robert W. Keyes Lighting up logic , 1993, Nature.

[15]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[16]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[17]  R. Landauer,et al.  Need for critical assessment , 1996 .

[18]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[19]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[20]  Quantum Physics and Computers , 1996, quant-ph/9612014.

[21]  James C. Ellenbogen,et al.  Overview of nanoelectronic devices , 1997, Proc. IEEE.

[22]  Hyatt M. Gibbs,et al.  Optical bistability in semiconductors , 1979 .

[23]  J. Matisoo,et al.  The tunneling cryotron—A superconductive logic element based on electron tunneling , 1967 .

[24]  Gunnar Carlstedt,et al.  Field-effect transistors in integrated circuits , 1974 .

[25]  A. Aviram Molecules for memory, logic and amplification , 1988 .

[26]  H. Berg Motile Behavior of Bacteria , 2000 .

[27]  J. Raimond,et al.  Quantum Computing: Dream or Nightmare? , 1996 .

[28]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  M. Kastner,et al.  The single-electron transistor , 1992 .

[30]  R J Feuerstein,et al.  Implementation of a general-purpose stored-program digital optical computer. , 1994, Applied optics.

[31]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[32]  D. V. Averin,et al.  Adiabatic quantum computation with Cooper pairs , 1998 .