Terrain and Surface Modeling Using Polarimetric SAR Data Features

Topography and surface slope variations affect perceived scattering polarization state of imaged targets in polarimetric synthetic aperture radar (PolSAR) applications. Accurate modeling of such effects can be used for both polarimetric data correction (e.g., better target classification) and topographic feature extraction. A framework is established in this paper to model target topography based on analytic relation between surface slopes and PolSAR data and imagery products (polarization orientation angle rotation, in particular). The developed formalism provides both forward, i.e., polarization rotation from topography, and inverse, i.e., terrain slopes from PolSAR data, solutions. The synthetic aperture radar (SAR) imaging scenario or mode is assumed to be general with arbitrary parameters (e.g., squint angle) and includes multi-SAR sensors for target terrain modeling.

[1]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[2]  Jong-Sen Lee,et al.  Compensation of Terrain Azimuthal Slope Effects in Geophysical Parameter Studies Using Polarimetric SAR Data , 1999 .

[3]  Paris W. Vachon,et al.  Prediction of Polarimetric-SAR Field-Orientation Rotation Due to Topographical Slope Variation for Squint Operations , 2011, IEEE Geoscience and Remote Sensing Letters.

[4]  M. El-Arini,et al.  Polarization dependence in electromagnetic inverse problems , 1981 .

[5]  Jong-Sen Lee,et al.  Measurement of topography using polarimetric SAR images , 1996, IEEE Trans. Geosci. Remote. Sens..

[6]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[7]  J. S. Lee,et al.  Topographic mapping using polarimetric SAR data , 1998 .

[8]  J. S. Lee,et al.  Polarimetric SAR characterization of man-made structures in urban areas using normalized circular-pol correlation coefficients , 2008 .

[9]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR image , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[10]  Jean-Claude Souyris,et al.  Compact polarimetry based on symmetry properties of geophysical media: the /spl pi//4 mode , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Thomas L. Ainsworth,et al.  On the estimation of radar polarization orientation shifts induced by terrain slopes , 2002, IEEE Trans. Geosci. Remote. Sens..

[12]  Thomas L. Ainsworth,et al.  A REVIEW OF POLARIZATION ORIENTATION ANGLE ESTIMATION FROM POLARIMETRIC SAR DATA , 2003 .

[13]  J. R. Huynen,et al.  Measurement of the target scattering matrix , 1965 .

[14]  Ridha Touzi,et al.  Characterization of target symmetric scattering using polarimetric SARs , 2002, IEEE Trans. Geosci. Remote. Sens..

[15]  Thomas L. Ainsworth,et al.  Eigenvector analysis of polarimetric SAR data , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[16]  Shinichi Suzuki,et al.  ALOS-2 mission and development status , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[17]  Ernst Lüneburg,et al.  Aspects of Radar Polarimetry , 2002 .

[18]  Masanobu Shimada ALOS-2 science program , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.