Gribov's Reggeon Calculus: Its Physical Basis and Implications

Abstract The equations of Gribov's Reggeon calculus and the cutting rules of Abramovskii, Gribov and Kancheli are derived from the assumption that processes involving large virtual masses are damped. The discussion is carried out entirely in the s channel and no use is made of the details of any particular field theory. Both the mathematical development and the physical picture which evolves rest on the assumed multiperipheral origin of Regge behavior.

[1]  K. Ter-martirosyan On the particle multiplicity distributions at high energy , 1973 .

[2]  T. Regge Introduction to complex orbital momenta , 1959 .

[3]  L. Mclerran,et al.  Structure of the reggeon-reggeon cut , 1975 .

[4]  S. Harrington,et al.  The n-loop expansion of the Reggeon calculus , 1975 .

[5]  Renormalization group analysis of the theory of interacting pomerons , 1975 .

[6]  R. G. Roberts,et al.  Triple-Regge analysis of pp→pX and some related phenomena — A detailed study , 1974 .

[7]  S. Harrington,et al.  Renormalization point invariance, twisted fans, and critical exponents at finite ϵ in the reggeon calculus. , 1975 .

[8]  Steven C. Frautschi,et al.  Principle of Equivalence for all Strongly Interacting Particles within the S-Matrix Framework , 1961 .

[9]  A. Capella,et al.  Elastic Scattering in Perturbative Reggeon Calculus , 1975 .

[10]  M. Baker Higher order terms in the ϵ expansion of the pomeron propagator , 1974 .

[11]  H. Abarbanel,et al.  Structure of the vacuum singularity in reggeon field theory , 1974 .

[12]  A. White Reggeon cut discontinuities from unitarity (II). The two-reggeon cut , 1972 .

[13]  A. Capella,et al.  Evaluation of the pomeron-pomeron cut in Gribov reggeon calculus from inclusive data , 1974 .

[14]  M. Goldberger,et al.  Behavior of scattering amplitudes at high energies, bound states, and resonances , 1962 .

[15]  A. Polyakov,et al.  Theory of interacting Pomerons , 1974 .

[16]  D. Amati,et al.  Theory of high-energy scattering and multiple production , 1962 .

[17]  V. Gribov,et al.  MOVING BRANCH POINTS IN j PLANE AND REGGE-POLE UNITARITY CONDITIONS , 1965 .

[18]  R. Brower,et al.  Pomeron: Decoupling Theorems , 1975 .

[19]  H. Abarbanel,et al.  Reggeon Field Theory: Formulation and Use , 1975 .

[20]  Higher order ϵ-terms in the renormalization group approach to Reggeon field theory , 1974 .

[21]  A. White Reggeon cut discontinuities from unitarity (I). The reggeon-particle cut , 1972 .

[22]  A. Kaidalov,et al.  The pomeron-particle total cross section and diffractive production of showers at very high energies , 1974 .

[23]  A. Capella,et al.  Behaviour of the proton-proton total cross section at ISR energies in the reggeon calculus , 1974 .

[24]  G. Fox,et al.  Triple Regge and finite mass sum rule analysis of the inclusive reaction pp → pX☆ , 1974 .