Random point processes and DLR equations

We prove the uniqueness of a solution of the Dobrushin-Lanford-Ruelle equation for random point processes when the generating function (interaction potential) has no hard cores, is non-negative and rapidely decreasing.

[1]  R. Dobrushin Gibbsian random fields. The general case , 1969 .

[2]  D. Ornstein Ergodic theory, randomness, and dynamical systems , 1974 .

[3]  David Ruelle,et al.  Statistical mechanics of a one-dimensional lattice gas , 1968 .

[4]  M. B. Averintsev Description of Markovian Random Fields by Gibbsian Conditional Probabilities , 1972 .

[5]  O. Lanford The classical mechanics of one-dimensional systems of infinitely many particles , 1968 .

[6]  David Ruelle,et al.  Superstable interactions in classical statistical mechanics , 1970 .

[7]  S. Miracle-Sole,et al.  Absence of Phase Transitions in Hard‐Core One‐Dimensional Systems with Long‐Range Interactions , 1970 .

[8]  O. Lanford The classical mechanics of one-dimensional systems of infinitely many particles , 1969 .

[9]  E. Presutti,et al.  Gibbs processes and generalized Bernoulli flows for hard-core one-dimensional systems , 1974 .

[10]  G. Lorentz,et al.  Interpolation theorems for operators in function spaces , 1968 .

[11]  B. U. Felderhof,et al.  Phase transitions in one-dimensional cluster-interaction fluids IA. Thermodynamics , 1970 .

[12]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[13]  R. Dobrushin Prescribing a System of Random Variables by Conditional Distributions , 1970 .

[14]  LIMIT DENSITY MATRICES FOR ONE-DIMENSIONAL CONTINUOUS SYSTEMS IN QUANTUM STATISTICAL MECHANICS , 1970 .

[15]  Johannes Kerstan,et al.  Unbegrenzt teilbare Punktprozesse , 1974 .

[16]  Freeman J. Dyson,et al.  Existence of a phase-transition in a one-dimensional Ising ferromagnet , 1969 .

[17]  D. Ornstein Two Bernoulli shifts with infinite entropy are isomorphic , 1970 .

[18]  W. Sullivan Potentials for almost Markovian random fields , 1973 .

[19]  R. L. Dobrushin,et al.  Gibbsian random fields for lattice systems with pairwise interactions , 1968 .

[20]  David Ruelle,et al.  Observables at infinity and states with short range correlations in statistical mechanics , 1969 .

[21]  M. Kreĭn,et al.  Linear operators leaving invariant a cone in a Banach space , 1950 .

[22]  R. Dobrushin The problem of uniqueness of a gibbsian random field and the problem of phase transitions , 1968 .

[23]  P. L. Dobruschin The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .