Faster Parameterized Algorithms for Minimum Fill-in

We present two parameterized algorithms for the Minimum Fill-in problem, also known as Chordal Completion: given an arbitrary graph G and integer k, can we add at most k edges to G to obtain a chordal graph? Our first algorithm has running time $\mathcal {O}(k^{2}nm+3.0793^{k})$, and requires polynomial space. This improves the base of the exponential part of the best known parameterized algorithm time for this problem so far. We are able to improve this running time even further, at the cost of more space. Our second algorithm has running time $\mathcal {O}(k^{2}nm+2.35965^{k})$ and requires $\mathcal {O}^{\ast}(1.7549^{k})$ space. To achieve these results, we present a new lemma describing the edges that can safely be added to achieve a chordal completion with the minimum number of edges, regardless of k.

[1]  Fedor V. Fomin,et al.  Treewidth computation and extremal combinatorics , 2008, Comb..

[2]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[3]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[4]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[5]  Pinar Heggernes,et al.  A vertex incremental approach for maintaining chordality , 2006, Discret. Math..

[6]  Ioan Todinca,et al.  Listing all potential maximal cliques of a graph , 2000, Theor. Comput. Sci..

[7]  Haim Kaplan,et al.  Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[9]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[10]  Anne Berry,et al.  Moplex elimination orderings , 2001, Electron. Notes Discret. Math..

[11]  Fan Chung Graham,et al.  Chordal Completions of Planar Graphs , 1994, J. Comb. Theory, Ser. B.

[12]  Pinar Heggernes,et al.  Minimal triangulations of graphs: A survey , 2006, Discret. Math..

[13]  G. Dirac On rigid circuit graphs , 1961 .

[14]  Andreas Parra,et al.  Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..

[15]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[16]  Fedor V. Fomin,et al.  Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.

[17]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[18]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[19]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[20]  Fedor V. Fomin,et al.  Exact algorithms for treewidth and minimum fill-in ∗ † , 2006 .

[21]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[22]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[23]  Pinar Heggernes,et al.  Faster Parameterized Algorithms for Minimum Fill-In , 2008, ISAAC.

[24]  Roded Sharan,et al.  A Polynomial Approximation Algorithm for the Minimum Fill-In Problem , 2000, SIAM J. Comput..

[25]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[26]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[27]  D. Rose Triangulated graphs and the elimination process , 1970 .

[28]  Yngve Villanger,et al.  Improved Exponential-Time Algorithms for Treewidth and Minimum Fill-In , 2006, LATIN.