Measurement of the Antineutrino Spectrum from ^{235}U Fission at HFIR with PROSPECT.

This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85  MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.

[1]  P. T. Surukuchi,et al.  A low mass optical grid for the PROSPECT reactor antineutrino detector , 2019, Journal of Instrumentation.

[2]  P. T. Surukuchi,et al.  Lithium-loaded liquid scintillator production for the PROSPECT experiment , 2019, Journal of Instrumentation.

[3]  P. T. Surukuchi,et al.  Diagnosing the reactor antineutrino anomaly with global antineutrino flux data , 2019, Physical Review D.

[4]  P. T. Surukuchi,et al.  The PROSPECT reactor antineutrino experiment , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[5]  K M Heeger,et al.  First Search for Short-Baseline Neutrino Oscillations at HFIR with PROSPECT. , 2018, Physical review letters.

[6]  P. T. Surukuchi,et al.  Performance of a segmented 6Li-loaded liquid scintillator detector for the PROSPECT experiment , 2018, Journal of Instrumentation.

[7]  N. Allemandou,et al.  The STEREO experiment , 2018, Journal of Instrumentation.

[8]  P. T. Surukuchi,et al.  Prospects for improved understanding of isotopic reactor antineutrino fluxes , 2017, 1709.10051.

[9]  M. Lindner Double Chooz , 2018 .

[10]  D. Dwyer,et al.  Impact of Fission Neutron Energies on Reactor Antineutrino Spectra , 2017, 1803.01787.

[11]  E. Mccutchan,et al.  Dissecting Reactor Antineutrino Flux Calculations. , 2017, Physical review letters.

[12]  T. Schwetz,et al.  Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly , 2017, Journal of High Energy Physics.

[13]  M. Laveder,et al.  Reactor fuel fraction information on the antineutrino anomaly , 2017, 1708.01133.

[14]  G F Cao,et al.  Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. , 2017, Physical review letters.

[15]  Nick Ryder,et al.  A novel segmented-scintillator antineutrino detector , 2017, 1703.01683.

[16]  anonymous,et al.  Erratum: Measurement of the reactor antineutrino flux and spectrum at Daya Bay [Phys. Rev. Lett. 116, 061801 (2016)]. , 2017, Physical review letters.

[17]  A. Hayes,et al.  Weak magnetism correction to allowed β decay for reactor antineutrino spectra , 2017, 1702.07520.

[18]  P. Huber NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum. , 2016, Physical review letters.

[19]  B. Han,et al.  Sterile Neutrino Search at the NEOS Experiment. , 2016, Physical review letters.

[20]  M. Lindner,et al.  Investigating the Spectral Anomaly with Different Reactor Antineutrino Experiments , 2015, 1512.06656.

[21]  J. Rademacker,et al.  Review of Multibody Charm Analyses , 2016 .

[22]  A. Hayes,et al.  Nuclear Zemach moments and finite-size corrections to allowed $\beta$ decay , 2016, 1607.02149.

[23]  G F Cao,et al.  Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay , 2014, Physical review letters.

[24]  M. A. Cortés-Giraldo,et al.  Recent developments in GEANT4 , 2015 .

[25]  T. Kawano,et al.  Possible origins and implications of the shoulder in reactor neutrino spectra , 2015, 1506.00583.

[26]  B. Ade,et al.  Modeling and Simulations for the High Flux Isotope Reactor Cycle 400 , 2015 .

[27]  S. Seo,et al.  New results from RENO and the 5 MeV excess , 2014, 1410.7987.

[28]  D. Dwyer,et al.  Spectral structure of electron antineutrinos from nuclear reactors. , 2014, Physical review letters.

[29]  J. I. Crespo-Anadón,et al.  Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector , 2014, 1406.7763.

[30]  G. Jonkmans,et al.  Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly , 2013, 1309.4146.

[31]  A. Cucoanes,et al.  New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products. , 2012, Physical review letters.

[32]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[33]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[34]  P. Huber Erratum: Determination of antineutrino spectra from nuclear reactors [Phys. Rev. C 84 , 024617 (2011)] , 2012 .

[35]  P. Huber On the determination of anti-neutrino spectra from nuclear reactors , 2011 .

[36]  P. Huber Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.

[37]  A. Letourneau,et al.  The reactor antineutrino anomaly , 2011, 1101.2755.

[38]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[39]  M. Decowski,et al.  Experimental investigation of geologically produced antineutrinos with KamLAND , 2005, Nature.

[40]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[41]  R. Nicklow Oak Ridge high flux isotope reactor , 1991 .

[42]  G. Barreau,et al.  Levels and gamma energies ofAl28studied by thermal neutron capture , 1982 .

[43]  F. Boehm,et al.  Search for neutrino oscillations at a fission reactor , 1981 .

[44]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .

[45]  J. Lockwood,et al.  Correlation of Meteorological Parameters with Cosmic-Ray Neutron Intensities , 1956 .

[46]  F. B. Harrison,et al.  Detection of the Free Neutrino: a Confirmation. , 1956, Science.