High speeds in a single chip

This article reviews the development and breakthrough of SiGe technologies. SiGe HBTs with transit frequencies ft and maximum oscillation frequencies fmax above 300 GHz and monolithic integrated millimeter-wave circuits based on these HBTs have been developed by several groups. As this paper shows in the overview, the combination of active devices with passive planar structures, including antenna elements, allows single-chip realizations of complete millimeter-wave front-ends.

[1]  Jochen Eberhardt,et al.  Modelling of SiGe heterobipolar transistors: 200 GHz frequencies with symmetrical delay times , 2001 .

[2]  M. Wurzer,et al.  86 GHz static and 110 GHz dynamic frequency dividers in SiGe bipolar technology , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[3]  G. Patton,et al.  Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy , 1988, 1987 International Electron Devices Meeting.

[4]  G.M. Rebeiz,et al.  A W-band SiGe 1.5V LNA for imaging applications , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[5]  W. Simburger,et al.  A New Regenerative Divider by Four up to 160 GHz in SiGe Bipolar Technology , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[6]  Dietmar Kissinger,et al.  A fully differential low-power high-linearity 77-GHz SiGe receiver frontend for automotive radar systems , 2009, 2009 IEEE 10th Annual Wireless and Microwave Technology Conference.

[7]  W. Simburger,et al.  A low-noise, and high-gain double-balanced mixer for 77 GHz automotive radar front-ends in SiGe bipolar technology , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[8]  A. Hajimiri,et al.  A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon , 2006, IEEE Journal of Solid-State Circuits.

[9]  M. Racanelli,et al.  Demonstration of a 270 GHz fT SiGe-C HBT within a manufacturing-proven 0.18μm BiCMOS process without the use of a raised extrinsic base , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[10]  T. Adam,et al.  SiGe HBT technology with f/sub max//f/sub T/=350/300 GHz and gate delay below 3.3 ps , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[11]  D. Knoll,et al.  SiGe HBT module with 2.5 ps gate delay , 2008, 2008 IEEE International Electron Devices Meeting.

[12]  J.-F. Luy,et al.  SiGe resonance phase transistor: active transistor operation beyond the transit frequency fT , 2004 .

[13]  K. Aufinger,et al.  A 77GHz 4-channel automotive radar transceiver in SiGe , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[14]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[15]  P. Chevalier,et al.  170-GHz transceiver with on-chip antennas in SiGe technology , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[16]  D. Dutartre,et al.  SiGe HBTs featuring fT ≫400GHz at room temperature , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[17]  Herbert Kroemer,et al.  Theory of a Wide-Gap Emitter for Transistors , 1957, Proceedings of the IRE.

[18]  S.P. Voinigescu,et al.  165-GHz Transceiver in SiGe Technology , 2008, IEEE Journal of Solid-State Circuits.

[19]  Resonance phase operation of heterobipolar transistors beyond their transit frequency , 2005, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, 2005..

[20]  J. Bock,et al.  3.3 ps SiGe bipolar technology , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[21]  Serge Luryi,et al.  Heterostructure bipolar transistor with enhanced forward diffusion of minority carriers , 1993 .

[22]  U.R. Pfeiffer,et al.  A 20 dBm Fully-Integrated 60 GHz SiGe Power Amplifier With Automatic Level Control , 2007, IEEE Journal of Solid-State Circuits.

[23]  Joohwa Kim,et al.  A 26dB-gain 100GHz Si/SiGe Cascaded Constructive-Wave Amplifier , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[24]  R. Lachner,et al.  A SiGe Monolithically Integrated 278 GHz Push-Push Oscillator , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[25]  Kevin T. Kornegay,et al.  W-band SiGe LNA using unilateral gain peaking , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[26]  P. Chevalier,et al.  Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging , 2008, IEEE Journal of Solid-State Circuits.

[27]  J. Cressler SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications , 1998 .

[29]  J. Bock,et al.  Simultaneous Integration of SiGe High Speed Transistors and High Voltage Transistors , 2006, 2006 Bipolar/BiCMOS Circuits and Technology Meeting.

[30]  Joohwa Kim,et al.  A DC-102GHz broadband amplifier in 0.12µm SiGe BiCMOS , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[31]  Jeng-Han Tsai,et al.  MMICs in the millimeter-wave regime , 2009 .

[32]  H.-M. Rein,et al.  Fully integrated SiGe VCOs with powerful output buffer for 77-GHz automotive Radar systems and applications around 100 GHz , 2004, IEEE Journal of Solid-State Circuits.