Laser-grooved backside contact solar cells with 680-mV open-circuit voltage

In this paper, we demonstrate for the first time the use of the laser-grooved solar cell technology, a proved commercial technology, for the implementation of the rear junction backside contact solar cells. Laser-grooved backside contact solar cells, designated as interdigitated backside buried contact (IBBC) solar cells, have been fabricated on planar, n-type, 1 /spl Omega//spl middot/cm wafers with a single layer SiO/sub 2/ anti-reflection coating, achieving 17% efficiency with open-circuit voltage (V/sub oc/) of more than 680 mV. Front and rear surface recombination velocities of 350 cm/s and 4800 cm/s, and more than 1 ms of post-processing bulk lifetime confirm that commercial laser-grooved solar cell fabrication process is capable of obtaining the efficiency advantages of the rear junction, backside contact design. Moreover, this paper presents a side-by-side comparison between the more conventional double-sided buried contact solar cell and the IBBC solar cell. The advantages of higher short-circuit current in the latter design due to no contact shading loss, and higher V/sub oc/ due to inherently lower surface recombination velocity of the IBBC structure are demonstrated.

[1]  R. Sinton,et al.  Prediction of the open‐circuit voltage of solar cells from the steady‐state photoconductance , 1997 .

[2]  R. J. Schwartz,et al.  The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight , 1977, IEEE Transactions on Electron Devices.

[3]  Richard M. Swanson,et al.  Doped surfaces in one sun, point-contact solar cells , 1989 .

[4]  David D. Smith Review of Back Contact Silicon Solar Cells for Low-Cost Application , 1999 .

[5]  Michael G. Mauk,et al.  Light trapping in Silicon-Film™ solar cells with rear pigmented dielectric reflectors , 1999 .

[6]  R. M. Swanson,et al.  Point-contact solar cells: Modeling and experiment , 1986 .

[7]  Kc Heasman,et al.  Interdigitated-Contact Silicon Silicon Solar Cells Made Without Photolithography , 1998 .

[8]  T. M. Bruton,et al.  17% BACK CONTACT BURIED CONTACT SOLAR CELLS , 2000 .

[9]  Richard M. Swanson,et al.  Simplified backside-contact solar cells , 1990 .

[10]  Paul A. Basore,et al.  Emitter wrap-through solar cell , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[11]  R. Williams,et al.  Large area, low cost space solar cells with optional wraparound contacts , 1981 .

[12]  Ronald A. Sinton,et al.  A quasi-steady-state open-circuit voltage method for solar cell characterization , 2000 .

[13]  Jianhua Zhao,et al.  Performance instability in n-type PERT silicon solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[14]  Johan Nijs,et al.  A novel silicon solar cell structrure with both external polarity contacts on the back surface , 1998 .

[15]  R. Hezel,et al.  Self-aligning, industrially feasible back contacted silicon solar cells with efficiencies >18% , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[16]  R. Sinton,et al.  Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data , 1996 .

[17]  R. M. Swanson,et al.  Photoinjected hot‐electron damage in silicon point‐contact solar cells , 1989 .

[18]  Pierre J. Verlinden,et al.  High efficiency interdigitated back contact silicon solar cells , 1987 .

[19]  O. Breitenstein,et al.  Investigations on low-cost back-contact silicon solar cells , 2001 .

[20]  J. E. Cotter,et al.  Interdigitated backside buried contact solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[21]  P. J. Verlinden,et al.  21.9% efficient silicon bifacial solar cells , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[22]  Keith R. McIntosh,et al.  Process simplifications to the Pegasus solar cell - SunPower's high-efficiency bifacial silicon solar cell , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[23]  R. D. Nasby,et al.  An interdigitated back contact solar cell with high-current collection , 1980, IEEE Electron Device Letters.

[24]  Paul A. Basore,et al.  Numerical modeling of textured silicon solar cells using PC-1D , 1990 .

[25]  Ronald A. Sinton,et al.  Quasi-steady-state photoconductance, a new method for solar cell material and device characterization , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[26]  Richard M. Swanson,et al.  Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency , 1990 .

[27]  R. M. Swanson,et al.  Measurement of the emitter saturation current by a contactless photoconductivity decay method , 1985 .

[28]  David D. Smith,et al.  The choice of silicon wafer for the production of low-cost rear-contact solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[29]  Mark Kerr,et al.  Back junction solar cells on n-type multicrystalline and CZ silicon wafers , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[30]  W. Warta,et al.  Lifetime spectroscopy for defect characterization: Systematic analysis of the possibilities and restrictions , 2002 .

[31]  Richard M. Swanson,et al.  Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity , 1991 .

[32]  Ajeet Rohatgi,et al.  Self-Doping Contacts and Associated Silicon Solar Cell Structures , 1998 .