Algebraic and Topological Aspects of Quantitative Feedback Theory
暂无分享,去创建一个
[1] H. Kwakernaak. A condition for robust stabilizability , 1982 .
[2] John C. Doyle. Quantitative Feedback Theory (QFT) and Robust Control , 1986, 1986 American Control Conference.
[3] I. Horowitz. Synthesis of feedback systems , 1963 .
[4] Per-Olof Gutman,et al. A Comparison of Robust and Adaptive Control , 1987 .
[5] H. W. Bode,et al. Network analysis and feedback amplifier design , 1945 .
[6] I. Postlethwaite,et al. Extensions of the small-µ test for robust stability , 1984, The 23rd IEEE Conference on Decision and Control.
[7] D. Carlson. A class of positive stable matrices , 1974 .
[8] I. Horowitz. Quantitative feedback theory , 1982 .
[9] Osita D. I. Nwokah,et al. Strong robustness in uncertain multivariable systems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.
[10] W. Rudin. Real and complex analysis , 1968 .
[11] O. Nwokah. Estimates for the inverse of a matrix and bounds for eigenvalues , 1978 .
[12] O. Nwokah,et al. Multiple gain parameter multivariable root locus , 1983 .
[13] D. H. Owens,et al. Feedback and multivariable systems , 1979, Fifth European Solid State Circuits Conference - ESSCIRC 79.
[14] K. Fan. Subadditive functions on a distributive lattice and an extension of Szász's inequality , 1967 .