Quantitive evaluation of Web site content and structure

Describes an approach automatically to classify and evaluate publicly accessible World Wide Web sites. The suggested methodology is equally valuable for analyzing content and hypertext structures of commercial, educational and non‐profit organizations. Outlines a research methodology for model building and validation and defines the most relevant attributes of such a process. A set of operational criteria for classifying Web sites is developed. The introduced software tool supports the automated gathering of these parameters, and thereby assures the necessary “critical mass” of empirical data. Based on the preprocessed information, a multi‐methodological approach is chosen that comprises statistical clustering, textual analysis, supervised and non‐supervised neural networks and manual classification for validation purposes.

[1]  Robert D. Galliers,et al.  Research issues in information systems , 1993, J. Inf. Technol..

[2]  Arno Scharl,et al.  A Conceptual Research Framework for Analyzing the Evolution of Electronic Markets , 1998, Electron. Mark..

[3]  Gustavo Rossi,et al.  Specifying Quality Characteristics and Attributes for Websites , 2001, Web Engineering.

[4]  Martin Bichler,et al.  Klare Sicht am Infohighway - Gescḧafte via Internet & Co. , 1996 .

[5]  Ben Shneiderman,et al.  Designing information-abundant web sites: issues and recommendations , 1997, Int. J. Hum. Comput. Stud..

[6]  Arno Scharl Neurofuzzy-Hybridsysteme: theoretische Grundlagen, Vergleich mit statistischen Problemlösungsklassen und Anwendung im Rahmen leistungsdiagnostischer Fragestellungen , 1999 .

[7]  Petra Schubert,et al.  Web Assessment - A Model for the Evaluation and the Assessment of successful Electronic Commerce Applications , 1997, Electron. Mark..

[8]  Patrali Chatterjee,et al.  Commercial Scenarios for the Web: Opportunities and Challenges , 1997, J. Comput. Mediat. Commun..

[9]  Gustavo Deco,et al.  Brain tumor classification based on EEG hidden dynamics , 1999, Intell. Data Anal..

[10]  Ludovic Lebart,et al.  Exploring Textual Data , 1997 .

[11]  C. D. Kemp,et al.  The Advanced Theory of Statistics, Vol. 3. Design and Analysis and Time- Series. , 1984 .

[12]  Jay F. Nunamaker,et al.  Systems Development in Information Systems Research , 1990, J. Manag. Inf. Syst..

[13]  Arno Scharl,et al.  Evolution of Web Information Systems: Exploring the Methodological Shift in the Context of Dynamic Business Ecosystems , 1999 .

[14]  Teuvo Kohonen,et al.  The 'neural' phonetic typewriter , 1988, Computer.

[15]  Peter Bodorik,et al.  Making Business Sense of Electronic Commerce , 1999, Computer.

[16]  Renata Tesch,et al.  Qualitative research : analysis types and software tools , 1990 .

[17]  Petra Schubert,et al.  Web assessment-measuring the effectiveness of electronic commerce sites going beyond traditional marketing paradigms , 1999, Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers.

[18]  Elizabeth M. Witherspoon,et al.  A Pound of Cure: A Content Analysis of Health Information on Web Sites of Top-Ranked HMOs , 2001 .

[19]  Annie Lang,et al.  Formal Features of Cyberspace: Relationships between Web Page Complexity and Site Traffic , 1999, J. Am. Soc. Inf. Sci..

[20]  G. Grisetti,et al.  Further Reading , 1984, IEEE Spectrum.

[21]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[22]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[23]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .