Friction between cellulose surfaces measured with colloidal probe microscopy

Abstract Colloidal probe microscopy was employed to study sliding friction between model cellulose surfaces in aqueous solutions. Regardless of scan size, friction exhibits irregular stick–slip behavior related to surface roughness. At small scan sizes (∼10 nm), the coefficient of friction decreases with increasing load. Above a critical scan size of about 100 nm — corresponding to the average size of asperities on one of the model surfaces — friction forces are independent of scan size, but depend on the load. Hydrodynamic forces contribute little to friction. Small amounts of high molecular weight, polyelectrolytes decrease significantly sliding friction between cellulose surfaces.

[1]  B. Bijsterbosch,et al.  Adsorption Mechanisms of Carboxymethyl Cellulose on Mineral Surfaces , 1998 .

[2]  G. J. Fleer,et al.  Polymers at Interfaces , 1993 .

[3]  E. Rabinowicz,et al.  Friction and Wear of Materials , 1966 .

[4]  D. Klingenberg,et al.  Simulations of fiber flocculation: Effects of fiber properties and interfiber friction , 2000 .

[5]  Peter Blau,et al.  Friction science and technology , 1995 .

[6]  H. Lee,et al.  Characterization of AKD sized papers by inverse gas chromatography , 1989 .

[7]  N. Amer,et al.  Simultaneous measurement of lateral and normal forces with an optical‐beam‐deflection atomic force microscope , 1990 .

[8]  J. Gong,et al.  Friction of gels , 1997 .

[9]  P. Claesson,et al.  Forces between polyelectrolyte-coated surfaces: relations between surface interaction and floc properties , 1994 .

[10]  Robert W. Carpick,et al.  Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy , 1997 .

[11]  R. A. Young,et al.  Mechanisms of oxygen- and argon-RF-plasma-induced surface chemistry of cellulose , 1997 .

[12]  John R. Grace,et al.  Motion of pulp fibre suspensions in rotary devices , 1991 .

[13]  Yehia E. El Mogahzy,et al.  A New Approach for Evaluating the Frictional Behavior of Cotton Fibers , 1993 .

[14]  Jacob N. Israelachvili,et al.  Origin and characterization of different stick-slip friction mechanisms , 1996 .

[15]  J. Månson,et al.  Dynamics of a planar concentrated fiber suspension with non‐hydrodynamic interaction , 1994 .

[16]  Christopher T. J. Dodson,et al.  Estimation of intra-floc forces , 1994 .

[17]  D. Klingenberg,et al.  Mechanical flocculation in flowing fiber suspensions , 2000, Physical review letters.

[18]  Hans-Jürgen Butt,et al.  Height calibration of optical lever atomic force microscopes by simple laser interferometry , 1995 .

[19]  John R. Grace,et al.  The yield stress of fibre suspensions , 1990 .

[20]  David L. Hanselman Environmental Attitudes, Ethics, Values and Their Communication. Proceedings of the National Conservation Education Association Conference (21st, State University of New York College of Environmental Science and Forestry, Syracuse, New York, August 11-14, 1974). , 1974 .

[21]  Hisae Yoshizawa,et al.  Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules , 1993 .

[22]  D. Tabor,et al.  The friction and deformation of polymers , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  C. Drummond,et al.  Examination of the geometry of long-range tip—sample interaction in atomic force microscopy , 1994 .

[24]  M. Welland,et al.  Atomic force microscope study of boundary layer lubrication , 1992 .

[25]  Holmberg,et al.  Surface Force Studies of Langmuir-Blodgett Cellulose Films , 1997, Journal of colloid and interface science.

[26]  Timothy Senden,et al.  Measurement of forces in liquids using a force microscope , 1992 .

[27]  R. Kerekes,et al.  Power requirements for pulp suspension fluidization , 1996 .

[28]  E. Meyer,et al.  Forces in scanning probe methods , 1995 .

[29]  Hiroo Tanaka,et al.  Kinetic aspects of the adsorption of polymers on cellulosic fibres , 1993 .

[30]  J. Hearle,et al.  Physical Properties of Textile Fibres , 1962 .

[31]  Richard M. Pashley,et al.  Direct measurement of colloidal forces using an atomic force microscope , 1991, Nature.

[32]  P. Hansma,et al.  A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .

[33]  H. Hansma,et al.  Applications for atomic force microscopy of DNA. , 1995, Biophysical journal.

[34]  D. Gray,et al.  surface analysis of paper and wood fibres by ESCA (electron spectroscopy for chemical analysis). i. application to cellulose and lignin , 1978 .

[35]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[36]  J. Neumeister,et al.  Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers , 1994 .

[37]  Mark W. Rutland,et al.  Dynamic Surface Force Measurement. 2. Friction and the Atomic Force Microscope , 1998 .