Algebraic phase unwrapping and zero distribution of polynomial for continuous-time systems
暂无分享,去创建一个
N. K. Bose | N. Bose | I. Yamada | I. Yamada
[1] Thomas Kailath,et al. Displacement structure approach to singular root distribution problems: the imaginary axis case , 1994 .
[2] Isao Yamada,et al. Algebraic multidimensional phase unwrapping and zero distribution of complex polynomials-characterization of multivariate stable polynomials , 1998, IEEE Trans. Signal Process..
[3] M. Marden. Geometry of Polynomials , 1970 .
[4] Nirmal Kumar Bose,et al. A simple general proof of Kharitonov's generalized stability criterion , 1987 .
[5] A. Cohn,et al. Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise , 1922 .
[6] Shankar P. Bhattacharyya,et al. Generalizations of the Hermite-Biehler theorem: The complex case , 2000 .
[7] H. M. Paynter,et al. Inners and Stability of Dynamic Systems , 1975 .
[8] S. Barnett. Polynomials and linear control systems , 1983 .
[9] David W. Lewis,et al. Matrix theory , 1991 .
[10] B. Picinbono,et al. The extended Routh's table in the complex case , 1991 .
[11] Yves Genin,et al. Euclid algorithm, orthogonal polynomials, and generalized Routh-Hurwitz algorithm , 1996 .
[12] N. Bose. Applied multidimensional systems theory , 1982 .
[13] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[14] Jason Sheng-Hong Tsai,et al. A new tabular form for determining root distribution of a complex polynomial with respect to the imaginary axis , 1993, IEEE Trans. Autom. Control..
[15] C. K. Yuen,et al. Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.